In order to simulate regions of flow separation observed in vivo, a conventional parallel plate flow chamber was modified to produce an asymmetric sudden expansion. The flow field was visualized using light reflecting particles and the size of the recirculation zone was measured by image analysis of the particles. Finite element numerical solutions of the two and three-dimensional forms of the Navier-Stokes equation were used to determine the wall shear stress distribution and predict the location of reattachment. For two different size expansions, numerical estimates of the reattachment point along the centerline of the flow chamber agreed well with experimental values for Reynolds numbers below 473. Even at a Reynolds number of 473, the flow could be approximated as two-dimensional for 80 percent of the chamber width. Peak shear stresses in the recirculation zone as high as 80 dyne/cm2 and shear stress gradients of 2500 (dyne/cm2)/cm were produced. As an application of this flow chamber, subconfluent bovine aortic endothelial cell shape and orientation were examined in the zone of recirculation during a 24 h exposure to flow at a Reynolds number of 267. After 24 h, gradients in cell orientation and shape were observed within the recirculation zone. At the location of reattachment, where the wall shear stress was zero but the shear stress gradients were large, cells plated at low density were still aligned with the direction of flow. No preferred orientation was observed at the gasket edge where the wall shear stress and shear stress gradients were zero. At higher cell densities, no alignment was observed at the separation point. The results suggest that endothelial cells can respond to spatial gradients of wall shear stress.

1.
Nerem, R. M., Levesque, M. J., “Fluid Mechanics in Atherosclerosis,” in Handbook of Bioengineering, Skalak, R., and Chien, S., eds., McGraw Hill, New York, 1981, pp. 21.1–21.21.
2.
Clowes
A. W.
,
Kirkman
T. R.
, and
Clowes
M. M.
, “
Mechanisms of Arterial Graft Failure. II. Chronic Endothelial and Smooth Muscle Proliferation in Healing Polytetrafluoroethylene Prostheses
,”
J. Vase. Surg.
, Vol.
3
,
1986
, pp.
877
884
.
3.
Ojha
M.
,
Ethier
C. R.
,
Johnston
K. W.
, and
Cobbold
R. S. C.
, “
Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model
,”
J. Vase. Surg.
, Vol.
12
,
1990
, pp.
747
753
.
4.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
, and
Glagov
S.
Pulsatile Flow and Atherosclerosis in the Human Cartoid Bifurcation
,”
Arteriosclerosis
, Vol.
5
,
1985
, pp.
293
302
.
5.
Friedman
M. H.
,
Brinkman
A. M.
,
Qin
J. J.
,
Seed
W. A.
, “
Relation Between Coronary Artery Geometry and the Distribution of Early Sudanophilic Lesions
,”
Atherosclerosis
, Vol.
98
,
1993
, pp.
193
199
.
6.
Zand
T.
,
Majno
G.
,
Nunnari
J. J.
,
Hoffman
A. H.
,
Savillonis
B. J.
,
MacWilliams
B.
, and
Joris
I.
, “
Lipid Deposition and Intimal Stress and Strain
,”
Am. J. Pathol.
, Vol.
139
,
1991
, pp.
101
113
.
7.
Levesque
M. J.
,
Sprague
E. A.
,
Schwartz
C. J.
,
Nerem
R. M.
, “
The Influence of Shear Stress on Cultured Vascular Endothelial Cells: The Stress Response of an Anchorage-Dependent Mammalian Cells
,”
Biotechnol. Prog.
, Vol.
5
,
1989
, pp.
1
8
.
8.
Davies
P. F.
, and
Tripathi
S. C.
, “
Mechanical Stress Mechanisms and the Cell. An Endothelial Paradigm
,”
Circ. Res.
, Vol.
72
,
1993
, pp.
239
245
.
9.
Nerem
R. M.
,
Levesque
M. J.
,
Cornhill
J. F.
, “
Vascular Endothelial Morphology as an Indicator of Blood Flow
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
172
176
.
10.
Langillc
B. L.
,
Adamson
S. L.
, “
Relationship Between Blood Flow Direction and Endothelical Cell Orientation at Arterial Branch Sites in Rabbits and Mice
,”
Circ. Res.
, Vol.
48
,
1981
, pp.
481
488
.
11.
White
G. E.
,
Gimbrone
M. A.
, and
Fujiwara
K.
, “
Factors Influencing the Expression of Stress Fibers in Vascular Endothelial Cells in Vivo
,”
J. Cell. Biol.
, Vol.
97
,
1983
, pp.
416
424
.
12.
Uematsu
M.
,
Kitabatake
A.
,
Jun
T.
,
Doi
Y.
,
Masuyama
T.
,
Fujii
K.
,
Yoshida
Y.
,
Ito
H.
,
Ishihara
K.
,
Hori
M.
,
Inoue
M.
, and
Kamada
T.
, “
Reduction of Endothelial Microfilament Bundles in the Low-Shear Region of the Canine Aorta
,”
Arteriosclerosis and Thrombosis
, Vol.
11
,
1991
, pp.
107
115
.
13.
Gerrity
R. G.
,
Richardson
M.
,
Somer
J. B.
,
Bell
F. P.
,
Schwartz
C. J.
, “
Endothelial Cell Morphology in Areas of In Vivo Evans Blue Uptake in the Aorta of Young Pigs
,”
Am. J. Pathol.
, Vol.
89
,
1977
, pp.
313
334
.
14.
Gerrity
R. G.
,
Goss
J. A.
,
Soby
L.
, “
Control of Monocyte Recruitment by Chemotactic Factor(s) in Lesion-Prone Areas of Swine Aorta
,”
Arteriosclerosis
, Vol.
5
,
1985
, pp.
55
66
.
15.
Dewey
C. F.
,
Bussolari
S. R.
,
Gimbrone
M. A.
, and
Davies
P. F.
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
,
1981
, pp.
177
185
.
16.
Wechezak
A. R.
,
Wight
T. N.
,
Viggers
R. F.
, and
Sauvage
L. R.
, “
Endothelial Adherence Under Shear Stress is Dependent Upon Microfilament Reorganization
,”
J. Cell. Physiol.
, Vol.
139
,
1989
, pp.
136
146
.
17.
Olesen
S.-P.
,
Clapham
D. E.
, and
Davies
P. F.
, “
Haemodynamic Shear Stress Activates a K+ Current in Vascular Endothelial Cells
,”
Nature
, Vol.
331
,
1988
, pp.
168
170
.
18.
Frangos
J. A.
,
Eskin
S. G.
,
Mclntire
L. V.
, and
Ives
C. L.
, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
, Vol.
227
,
1985
, pp.
1477
1479
.
19.
Diamond
S. L.
,
Eskin
S. G.
, and
Mclntire
L. V.
Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells
,”
Science
, Vol.
243
,
1989
, pp.
1483
1485
.
20.
Levesque
M. J.
,
Nerem
R. M.
, and
Sprague
E. A.
, “
Vascular Endothelial Cell Proliferation in Culture and the Influence of Flow
,”
Biomaterials
, Vol.
11
,
1991
, pp.
702
707
.
21.
Helmlinger
G.
,
Geiger
R. V.
,
Schreck
S.
, and
Nerem
R. M.
, “
Effect of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
,
1991
, pp.
123
131
.
22.
Davies
P. F.
,
Remuzzi
A.
,
Gordon
E. T.
,
Dewey
C. F.
, and
Gimbrone
M. A.
,
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover in vitro
,
Proc. Natl. Acad. Sci.
, Vol.
83
,
1986
, pp.
2114
2118
.
23.
DePaola
N.
,
Gimbrone
M. A.
,
Davies
P. F.
, and
Dewey
C. F.
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
, Vol.
12
,
1992
, pp.
1254
1257
.
24.
Karino
T.
,
Goldsmith
H. L.
, “
Adhesion of Human Platelets to Collagen on the Walls Distal to a Tubular Expansion
,”
Microvasc. Res.
, Vol.
17
,
1979
, pp.
238
262
.
25.
Pritchard
W. F.
,
Davies
P. F.
,
Polacek
D. C.
,
Derafshi
Z.
,
Dull
R. O.
,
Jones
S. A.
,
Giddens
D. P.
, “
Influence of Hemodynamic Factors on the Adhesion Pattern of U937 Cells in a Flow Model: Implications in Atherosclerosis
,”
ASME BED
, Vol.
22
,
1992
, pp.
139
142
.
26.
Warren, J. B., “Large Vessel Endothelial Isolation In The Endothelium: An Introduction to Current Research,” Wiley-Liss, Inc., New York, 1990, pp. 263–272.
27.
Ruoslahti
R.
,
Hayman
E. G.
,
Pierschbacher
M.
, and
Engvall
E.
, “
Fibronectin: Purification, Immunochemical Properties, and Biological Activities
.”
Meth. Enzymol
, Vol.
82
,
1982
, pp.
803
831
.
28.
Laemmli
U. K.
, “
Cleavage of Structural Proteins During Assembly of the Head of Bacteriophage T4
,”
Nature
, Vol.
227
,
1970
, pp.
680
685
.
29.
Yamada, K. M., “Isolation of Fibronectin from Plasma and Cells,” In Immunochemistry of the Extracellular Matrix; Furthmayr, H., ed.; CRC Press: Boca Raton, Vol. 1, 1982, pp. 111–123.
30.
Truskey
G. A.
, and
Pirone
J. S.
, “
The Effect of Fluid Shear Stress on Cell Adhesion to Fibronectin-Treated Surfaces
.”
J. Biomed. Mater. Res.
, Vol.
24
,
1990
, pp.
1333
1353
.
31.
Potter, M. C., and Foss, J. F., Fluid Mechanics, Great Lakes Press, Inc., 1982, p. 284.
32.
Armaly
B. F.
,
Durst
F.
,
Pereira
J. C. F.
, and
Scho¨nung
B.
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech
, Vol.
127
,
1983
, pp.
473
496
.
33.
Macagno
E. O.
, and
Hung
T. K.
, “
Computational and Experimental Study of a Captive Annular Eddy
,”
J. Fluid Mech
, Vol.
28
,
1967
, pp.
43
64
.
34.
Zar, J. H., Biostatistical Analysis. Second Edition, Prentice-Hall Englewood Cliffs, NJ, 1984, pp. 236–242.
35.
Truskey
G. A.
, and
Proulx
T. L.
, “
Quantitation of Cell Area on Glass and Fibronectin-Coated Surfaces by Digital Image Analysis
,”
Biotechnol. Prog.
, Vol.
6
,
1990
, pp.
513
519
.
36.
Ojha
M.
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis
,”
J. Biomech.
, Vol.
26
,
1993
, pp.
1377
1388
.
37.
Lei, M., Kleinsteuer, C., and Truskey, G. A., “Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 117, 1995 (In Press).
38.
Satcher
R. L.
,
Bussolari
S. R.
,
Gimbrone
M. A.
, and
Dewey
C. F.
, “
The Distribution of Fluid Forces on Model Arterial Endothelium Using Computational Fluid Dynamics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
, pp.
309
316
.
39.
Olivier
L. A.
, and
Truskey
G. A.
, “
A Numerical Analysis of Forces Exerted by Laminar Flow on Spreading Cells in a Parallel Plate Flow Chamber Assay
,”
Biotechnol. Bioeng.
, Vol.
42
,
1993
, pp.
936
973
.
40.
Barbee
K. A.
,
Davies
P. F.
, and
Lai
R.
, “
Shear Stress-Induced Reorganization of the Surface Topography of Living Endothelial Cells Imaged by Atomic Force Microscopy
,”
Circ. Res.
, Vol.
74
,
1994
, pp.
163
171
.
This content is only available via PDF.
You do not currently have access to this content.