Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20–80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for ˜ 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as ˜ 25 – 100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.

1.
Basser
P. J.
, and
Grodzinsky
A. J.
,
1993
, “
The Donnan Model Derived From Microstructure
,”
Biophysical Chemistry
, Vol.
46
, pp.
57
68
.
2.
Buckwalter, J., Hunziker, E., Rosenberg, L., Coutts, R., Adams, M., and Eyre, D., 1988, “Articular Cartilage: Composition and Structure,” Woo, S. L., and Buckwalter, J. A., cds., Injury and Repair of the Musculoskeletal Soft Tissues, pp. 405–425, American Academy of Orthopaedic Surgeons, Park Ridge, IL.
3.
Buschmann, Michael D., 1992, “Chondrocytes in Agarose Culture: Development of a Mechanically Functional Matrix, Biosynthctic Response to Compression, and Molecular Model of the Modulus,” PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Buschmann
M. D.
,
Gluzband
Y. A.
,
Grodzinsky
A. J.
,
Kimura
J. H.
, and
Hunziker
E. B.
,
1992
, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
, Vol.
10
, pp.
745
758
.
5.
Carnie
S. L.
, and
Torrie
G. M.
,
1984
, “
Statistical Mechanics of the Electrical Double Layer
,”
Adv. in Chem. Phys.
, Vol.
56
, pp.
141
253
.
6.
Comper, W. D., 1991, “Physicochemical Aspects of Cartilage Extracellular Matrix,” Hall, B., and Newman, S., eds., Cartilage: Molecular Aspects, pp. 59–96. CRC, Boca Raton, FL.
7.
Comper
W. D.
, and
Laurent
T. C.
,
1978
, “
Physiological Function of Connective Tissue Polysaccharides
,”
Physiological Reviews
, Vol.
58
, pp.
255
315
.
8.
Comper
W. D.
, and
Preston
B. N.
,
1974
, “
Model Connective Tissue Systems: A Study of Polyion-Mobile Ion and of Excluded Volume Interactions of Proteoglycans
,”
Biochem. J.
, Vol.
143
, pp.
1
9
.
9.
Comper
W. D.
, and
Williams
R. P.
,
1987
, “
Hydrodynamics of Concentrated Proteoglycan Solutions
,”
J. Biol. Chem.
, Vol.
262
, pp.
13464
13471
.
10.
de Gennes, P. G., 1978, “Global Molecular Shapes in Polyelectrolyte Solutions,” Everett, D. H., and Vincent, B., eds., Colston Papers No. 29. Ions in Macromolecular and Biological Systems, pp. 69–79, Scientechnica, Bristol, U.K.
11.
Einevoll
G.
, and
Hemmer
P. C.
,
1988
, “
Spatial Distribution of Ions Around Rod-Like Polyelectrolytes
,”
J. Chem. Phys.
, Vol.
89
, pp.
474
482
.
12.
Eisenberg
S. R.
, and
Grodzinsky
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connective Tissues
,”
J. Orthop. Res.
, Vol.
3
, pp.
148
159
.
13.
Eisenberg
S. R.
, and
Grodzinsky
A. J.
,
1988
, “
Electrokinetic Micro-model of Extracellular Matrix and Other Polyelectrolyte Networks
,”
Physicochemical Hydrodynamics
, Vol.
10
, pp.
517
539
.
14.
Engel, J., and Furthmayr, H., 1987, “Electron Microscopy and Other Physical Methods for the Characterization of Extracellular Matrix Components: Laminin, Fibronectin, Collagen IV, Collagen VI, and Proteoglycans,” Cunningham, L. W., ed., Methods in Enzymology, Vol. 145, pp. 3–78, Academic Press, San Diego.
15.
Fixman
M.
,
1979
, “
The Poisson-Boltzmann Equation and its Application to Polyelectrolytes
,”
J. Chem. Phys.
, Vol.
70
, pp.
4995
5005
.
16.
Fletcher
P. D. I.
,
Robinson
B. H.
, and
Tabony
J.
,
1988
, “
A Quasielastic Neutron-Scattering Study of the Molecular Mobility of Water Associated with a Protein Both in Aqueous Solution and Adjacent to a Charged Surfactant
,”
Biochim. Biophys. Acta
, Vol.
954
, pp.
27
36
.
17.
Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY.
18.
Frank, E. H., Grodzinsky, A. J., Phillips, S. L., and Grimshaw, P. E., 1990, “Physicochcmical and Bioelectrical Determinants of Cartilage Material Properties,” Mow, V. C., Ratcliffe, A., and Woo, S. L. Y., eds., Biomechanics of Diarthroidal Joints, Vol. 1, pp. 261–282, Springer-Verlag, New York.
19.
Fuoss
R. M.
,
Katchalsky
A.
, and
Lifson
S.
,
1951
, “
The Potential of an Infinite Rod-like Molecule and the Distribution of Counterions
,”
Proc. Nat. Acad. Sci. (U.S.)
, Vol.
37
, pp.
579
589
.
20.
Grynpas
M. D.
,
Eyre
D. R.
, and
Kirschner
D. A.
,
1980
, “
Collagen Type II Differs from Type I in Native Molecular Packing
,”
Biochem. Biophys. Acta
, Vol.
626
, pp.
346
355
.
21.
Guldbrand
L. G.
,
Nilsson
L.
, and
Nordenskiold
L.
,
1986
, “
A Monte Carlo Simulation of Electrostatic Forces Between Hexagonally Packed DNA Double Helices
,”
J. Chem. Phys.
, Vol.
85
, pp.
6686
6698
.
22.
Gur
Y.
,
Ravina
I.
, and
Babchin
A. J.
,
1978
, “
On the Electrical Double Layer Theory 1. A Numerical Method for Solving a Generalized Poisson-Boltzmann Equation
,”
J. Coll. Int. Sci.
, Vol.
64
, pp.
326
332
.
23.
Heinegard
D.
, and
Oldberg
,
1989
, “
Structure and Biology of Cartilage and Bone Matrix Noncollagenous Macromolecules
,”
FASEB J.
, Vol.
3
, pp.
2042
2051
.
24.
Hodge
W. A.
,
Fijan
R. S.
,
Carlson
K. L.
,
Burgess
R. G.
,
Harris
W. H.
, and
Mann
R. W.
,
1986
, “
Contact Pressures in the Human Hip Joint Measured in vivo
,”
Proc. Natl. Acad. Sci. USA
, Vol.
83
, pp.
2879
2883
.
25.
Israelachvili, J. N., 1991, Intermolecular and Surface Forces, Academic Press, New York, NY, 2nd edition.
26.
Jonsson
B.
,
Wennerstrom
H.
, and
Halle
B.
,
1980
, “
Ion Distributions in Lamellar Liquid Crystals. A Comparison Between Results from Monte Carlo Simulations and Solutions of the Poisson-Boltzmann Equation
,”
J. Phys. Chem.
, Vol.
84
, pp.
2179
2185
.
27.
Katchalsky
A.
,
1971
, “
Polyelectrolytes
,”
Pure Appl. Chem.
, Vol.
26
, pp.
327
373
.
28.
Katchalsky, A., Alexandrowicz, Z., and Kedem, O., 1966, “Polyelectrolyte Solutions,” Conway, B. E., and Barrades, R. G., eds., Chemical Physics of Ionic Solutions, pp. 295–346, Wiley, New York.
29.
Kimura
J. H.
,
Lohmander
L. S.
, and
Hascall
V. C.
,
1984
, “
Studies on the Biosynthesis of Cartilage Proteoglycan in a Model System of Cultured Chondrocytes from the Swarm Rat Chondrosarcoma
,”
J. Cell Biochem.
, Vol.
26
, pp.
261
278
.
30.
Lai
W. M.
,
Hou
J. S.
, and
Mow
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
245
258
.
31.
Lesperance
L. M.
,
Gray
M. L.
, and
Burstein
D.
,
1992
, “
Determination of Fixed Charge Density in Cartilage Using Nuclear Magnetic Resonance
,”
J. Orthop. Res.
, Vol.
10
, p.
1
14
.
32.
Manning
G. S.
,
1969
, “
Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligativc Properties
,”
J. Chem. Phys.
, Vol.
51
, pp.
924
933
.
33.
Marcus
R. A.
,
1955
, “
Calculation of Thermodynamic Properties of Polyelectrolytes
,”
J. Chem. Phys.
, Vol.
23
, pp.
1057
1068
.
34.
Maroudas, A., 1979, “Physico-chemical Properties of Articular Cartilage,” Freeman, M. A. R., ed., Adult Articular Cartilage, 2nd ed., pp. 215–290, Pitman, Tunbridge Wells, England.
35.
Maroudas
A.
, and
Bannon
C.
,
1981
, “
Measurement of Swelling Pressures in Cartilage and Comparison with the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
, Vol.
18
, pp.
619
632
.
36.
Maroudas
A.
,
Weinberg
P. D.
,
Parker
K. H.
, and
Winlove
C. P.
,
1988
, “
The Distributions and Diffusivities of Small Ions in Chondroitin Sulphate, Hyaluronate, and Some Proteoglycan Solutions
,”
Biophysical Chemistry
, Vol.
32
, pp.
257
270
.
37.
Maroudas
A.
,
Wachtel
E.
,
Grushko
G.
,
Katz
E. P.
, and
Weinberg
P.
,
1991
, “
The Effect of Osmotic and Mechanical Pressures on Water Partitioning in Articular Cartilage
,”
Biophys. Biochem. Acta
, Vol.
1073
, pp.
285
294
, 1991.
38.
McCaskill
J. S.
, and
Fackerell
E. D.
,
1988
, “
Painleve Solution of the Poisson-Boltzmann Equation for a Cylindrical Polyelectrolyte in Excess Salt Solution
,”
J. Chem. Soc. Faraday Trans. 2
, Vol.
84
, pp.
161
179
.
39.
McLaughlin
S.
,
1989
, “
The Electrostatic Properties of Membranes
,”
Annu. Rev. Biophys. Biophys. Chem.
, Vol.
89
, pp.
113
136
.
40.
Melcher, J. R., 1981, Continuum Electromechanics, MIT Press, Cambridge, MA.
41.
Morgelin
M.
,
Paulsson
M.
,
Malmstrom
A.
, and
Heinegard
D.
,
1989
, “
Shared and Distinct Structural Features of Interstitial Proteoglycans from Different Bovine Tissues Revealed by Electron Microscopy
,”
J. Biol. Chem.
, Vol.
264
, pp.
12080
12090
.
42.
Mow, v., and Rosenwasser, M., 1988, “Articular Cartilage: Biomechanics,” Woo, S. L., and Buckwalter, J. A., eds., Injury and Repair of the Musculoskeletal Soft Tissues, pp. 427–463, American Academy of Orthopaedic Surgeons, Park Ridge, IL.
43.
Muir, I. H. M., 1979, “Biochemistry,” Freeman, M. A. R., ed., Adult Articular Cartilage, 2nd ed., pp. 145–214, Pitman, Tunbridge Wells, England.
44.
Nagasawa
M.
, and
Kagawa
I.
,
1957
, “
Colligative Properties of Polyelectrolyte Solutions. IV. Activity Coefficient of Sodium Ion
,”
J. Polymer Sci.
, Vol.
25
, pp.
61
76
.
45.
Ogsten
A. G.
,
Preston
B. N.
, and
Wells
J. D.
,
1973
, “
On the Transport of Compact Particles through Solutions of Chain-polymers
,”
Proc. R. Soc. Lond. A
, Vol.
333
, pp.
297
316
.
46.
Oosawa, F., 1971, Polyelectrolytes, Marcel Dekker, New York, NY, First Edition.
47.
Overbeek
J. T. G.
,
1956
, “
The Donnan Equilibrium
,”
Prog. Biophys. Biophys. Chem.
, Vol.
6
, pp.
58
84
.
48.
Parker
K. H.
,
Winlove
C. P.
, and
Maroudas
A.
,
1988
, “
The Theoretical Distributions and Diffusivities of Small Ions in Chondroitin Sulphate and Hyaluronate
,”
Biophysical Chemistry
, Vol.
32
, pp.
271
282
.
49.
Peitzsch
R. M.
, and
Reed
W. F.
,
1992
, “
High Osmotic Stress Behavior of Hyaluronate and Heparin
,”
Biopolymers
, Vol.
32
, pp.
219
238
.
50.
Preston
B. N.
,
Snowden
J. M.
, and
Houghton
K. T.
,
1972
, “
Model Connective Tissue Systems: The Effect of Proteoglycans on the Distribution of Small Non-electrolytes and Micro-ions
,”
Biopolymers
, Vol.
11
, pp.
1645
1659
.
51.
Ramanathan
G. V.
,
1985
, “
The Cell Model for Polyelectrolytes with Added Salt
,”
J. Chem. Phys.
, Vol.
82
, pp.
1482
1491
.
52.
Rau
D. C.
, and
Parsegian
V. A.
,
1990
, “
Direct Measurements of Forces Between Linear Polysaccharides Xanthan and Schizophyllan
,”
Science
, Vol.
249
, pp.
1278
1281
.
53.
Rinaudo, M., 1978, “Interchain Correlation Observed in Neutron Scattering by Polyelectrolyte Solutions,” Everett, D. H., and Vincent, B., eds., Colston Papers No. 29, Ions in Macromolecular and Biological Systems, pp. 79–80, Scientechnica, Bristol, UK.
54.
Robinson, R. A., and Stokes, R. H., 1968, Electrolyte Solutions, Butter-worths, London.
55.
Sah, R. L-Y., 1991, Personal Communication.
56.
Sanfield, A., 1968, Introduction to the Thermodynamics of Charged and Polarized Layers, Wiley, New York, NY.
57.
Shaw
M.
,
1976
, “
Interpretation of Osmotic Pressure
,”
Biophys. J.
, Vol.
16
, pp.
43
57
.
58.
Svensson
B.
,
Jonsson
B.
, and
Woodward
C. E.
,
1990
, “
Monte Carlo Simulations of an Electrical Double Layer
,”
J. Phys. Chem.
, Vol.
94
, pp.
2105
2113
.
59.
Tanford, C., 1961, Physical Chemistry of Macromolecules, Wiley, New York, NY.
60.
Upholt, W. B., and Olsen, B. R., 1991, “The Active Genes of Cartilage,” Hall, B., and Newman, S., eds., Cartilage: Molecular Aspects, pp. 43–79, CRC, Boca Raton, FL.
61.
Urban
J. P. G.
,
Maroudas
A.
,
Bayliss
M. T.
, and
Dillon
J.
,
1979
, “
Swelling Pressures of Proteoglycans at the Concentrations Found in Cartilagenous Tissues
,”
Biorheology
, Vol.
16
, pp.
447
464
.
62.
Wells
J. D.
,
1973
, “
Salt Activity and Osmotic Pressure in Connective Tissue. I. A Study of Solutions of Dextran Sulphate as a Model System
,”
Proc. R. Soc. Lond. B.
, Vol.
183
, pp.
399
419
.
63.
Wells
J. D.
,
1973
, “
Thermodynamics of Polyelectrolyte Solutions. An Empirical Extension of the Manning Theory to Finite Salt Concentrations
,”
Biopolymers
, Vol.
12
, pp.
223
227
.
64.
Wennerstrom
H.
,
Jonsson
B.
, and
Linse
P.
,
1982
, “
The Cell Model for Polyelectrolyte Systems. Exact Statistical Mechanical Relations, Monte Carlo Simulations, and the Poisson-Boltzmann Approximation
,”
J. Chem. Phys.
, Vol.
76
, pp.
4665
4670
.
65.
Williams
R. P. W.
, and
Comper
W. D.
,
1990
, “
Osmotic Flow Caused by Polyelectrolytes
,”
Biophysical Chemistry
, Vol.
36
, pp.
223
234
.
66.
Zimm
B. H.
, and
Le Bret
M.
,
1983
, “
Counter-ion Condensation and System Dimensionality
,”
J. Biomolecular Structure and Dynamics
, Vol.
1
, pp.
461
471
.
This content is only available via PDF.
You do not currently have access to this content.