In Part 1 of this work, we formulated and analyzed a mathematical model for our fibroblast-populated collagen microsphere (FPCM) assay of cell traction forces (Moon and Tranquillo, 1993). In this assay, the FPCM diameter decreases with time as the cells compact the gel by exerting traction on collagen fibrils. In Part I we demonstrated that the diameter reduction profiles for varied initial cell concentration and varied initial FPCM diameter are qualitatively consistent with the model predictions. We show here in Part 2 how predictions of a model similar to that of Part 1, along with the determination of the growth parameters of the cells and the viscoelastic parameters of the gel, allow us to estimate the magnitude of a cell traction parameter, the desired objective index of cell traction forces. The model is based on a monophasic continuum-mechanical theory of cell-extracellular matrix (ECM) mechanical interactions, with a species conservation equation for cells (1), a mass conservation equation for ECM (2), and a mechanical force balance for the cell/ECM composite (3). Using a constant-stress rheometer and a fluids spectrometer in creep and oscillatory shear modes, respectively, we establish and characterize the linear viscoelastic regime for the reconstituted type 1 collagen gel used in our FPCM traction assay and in other assays of cell-collagen mechanical interactions. Creep tests are performed on collagen gel specimens in a state resembling that in our FPCM traction assay (initially uncompacted, and therefore nearly isotropic and at a relatively low collagen concentration of 2.1 mg/ml), yielding measurements of the zero shear viscosity, μ0 (7.4 × 106 Poise), and the steady-state creep compliance, Je0. The shear modulus, G (155 dynes/cm2), is then determined from the inverse of Je0 in the linear viscoelastic regime. Oscillatory shear tests are performed in strain sweep mode, indicating linear viscoelastic behavior up to shear strains of approximately 10 percent. We discuss the estimation of Poisson’s ratio, v, which along with G and μ0 specifies the assumed isotropic, linear viscoelastic stress tensor for the cell/collagen gel composite which appears in (3). The proliferation rate of fibroblasts in free floating collagen gel (appearing in (1)) is characterized by direct cell counting, yielding an estimate of the first-order growth rate constant, k (5.3 × 10-6 s-1). These independently measured and estimated parameter values allow us to estimate that the cell traction parameter, τ0, defined in the active stress tensor which also appears in (3), is in the range of 0.00007–0.0002 dyne · cm4/mg collagen · cell. This value is in agreement with a reported measure of traction obtained directly via isometric force measurement across a slab of fibroblast-containing collagen gel.

1.
Allen
T. D.
,
Schor
S. L.
, and
Schor
A. M.
,
1984
, “
An Ultrastructural Review of Collagen Gels, a Model System for Cell-Matrix, Cell-Basement Membrane and Cell-Cell Interactions
,”
Scan Electron Microsc.
, Vol.
1
, pp.
375
390
.
2.
Barocas, V. H., Knapp, D. M., and Tranquillo, R. T., 1995, “Rheology of Reconstituted Type 1 Collagen Gel in Confined Compression,” submitted.
3.
Barocas, V. H., and Tranquillo, R. T., 1944, “Biphasic Theory and In Vitro Assays of Cell-Fibril Mechanical Interactions in Tissue-Equivalent Collagen Gels,” Cell Mechanics and Cellular Engineering, V. C. Mow, F. Guilak, R. Tran-Son-Tay, and R. Hochmuth, eds., Springer-Verlag.
4.
Bell
E.
,
Ivarsson
B.
, and
Merrill
C.
,
1979
, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential in vitro
,”
Proc. Natl. Acad. Sci. USA
, Vol.
76
, p.
1274
1274
.
5.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, Dynamics of Poymeric Liquids, Wiley, New York.
6.
Buschmann
M. D.
,
Gluzband
Y.
,
Grodzinsky
A. J.
,
Kimura
J. H.
, and
Hunziker
E. B.
,
1992
, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
, Vol.
10
, pp.
745
58
.
7.
Chapuis
J. F.
, and
Agache
P.
,
1992
, “
A New Technique to Study the Mechanical Properties of Collagen Lattices
,”
J. Biomechanics
, Vol.
25
, No.
2
, pp.
115
120
.
8.
Clark
A. H.
, and
Ross-Murphy
S. B.
,
1987
, “
Structural and Mechanical Properties of Bipolymer Gels
,”
Adv. Polym. Sci.
, Vol.
83
, p.
57
57
.
9.
Danowski
B. A.
, and
Harris
A. K.
,
1988
, “
Changes in Fibroblast Contractility, Morphology, and Adhesion in Response to a Phorbol Ester Tumor Promoter
,”
Exp. Cell. Res.
, Vol.
177
, No.
1
, p.
47
47
.
10.
Delvoye
P.
,
Wiliquet
P.
,
Leveque
J. L.
,
Nusgcns
B.
, and
Lapicrc
C.
,
1991
, “
Measurement of Mechanical Forces Generated by Skin Fibroblasts Embedded in a Three-Dimensional Collagen Gel
,”
J. Invest. Dermatol.
, Vol.
97
, p.
898
898
.
11.
Dennerll
T. J.
,
Joshi
H. C.
,
Steel
V. L.
,
Buxhaum
R. E.
, and
Heidemann
S. R.
,
1988
, “
Tension and Compression in the Cytoskeleton of PC-12 Neurites II: Quantitative Measurements
,”
J. Cell Biol.
, Vol.
107
, pp.
665
674
.
12.
Dickinson
R. B.
,
McCarthy
J. B.
, and
Tranquillo
R. T.
,
1993
, “
Quantitative Characterization of Cell Invasion in vitro: Formulation and Validation of a Mathematical Model of the Collagen Gel Invasion Assay
,”
Ann. Biomed. Eng.
, Vol.
21
, pp.
679
697
.
13.
Edwards
S. F.
,
1986
, “
The Theory of Macromolecular Networks
,”
Biorheology
, Vol.
23
, pp.
589
603
.
14.
Ehrlich
H. P.
,
1988
, “
The Role of Connective Tissue Matrix in Wound Healing
,”
Prog. Clin. Biol. Res.
, Vol.
266
, p.
243
243
.
15.
Ehrlich
H. P.
,
Griswold
T. R.
, and
Rajaratnam
J. B.
,
1986
, “
Studies on Vascular Smooth Muscle Cells and Dermal Fibroblasts in Collagen Matrices. Effects of Heparin
,”
Exp. Cell Res.
, Vol.
164
, pp.
154
62
.
16.
Farquhar
T.
,
Dawson
P. R.
, and
Torzilli
P. A.
,
1990
, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, No.
4
, pp.
414
425
.
17.
Felder
S.
, and
Elson
E. L.
,
1990
, “
Mechanics of Fibroblast Locomotion: Quantitative Analysis of Forces and Motions at the Leading Lamellas of Fibroblasts
,”
J. Cell Biol.
, Vol.
111
, pp.
2513
2526
.
18.
Ferry, J. D., 1988, “Structure and Rheology of Fibrin Networks,” Biological and Synthetic Polymer Networks, O. Kramer, ed., p. 41, Elsevier Applied Science Publishers, London.
19.
Franck
A. J. P.
,
1985
, “
A Rheometer for Characterizing Polymer Melts and Suspensions in Shear Creep and Recovery Experiments
,”
J. Rheol.
, Vol.
29
, No.
6
, pp.
833
850
.
20.
Grinnell
F.
, and
Lamke
C. R.
,
1984
, “
Reorganizations of Hydrated Collagen Lattices by Human Skin Fibroblasts
,”
J. Cell Sci.
, Vol.
66
, p.
51
51
.
21.
Guido
S.
, and
Tranquillo
R. T.
,
1993
, “
A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels: Correlation of Fibroblast Orientation and Gel Birefringence
,”
J. Cell Sci.
, Vol.
105
, pp.
317
331
.
22.
Guidry
C.
, and
Grinnell
F.
,
1985
, “
Studies on the Mechanism of Hydrated Collagen Gel Reorganization by Human Skin Fibroblasts
,”
J. Cell Sci.
, Vol.
79
, p.
67
67
.
23.
Guidry
C.
, and
Grinnell
F.
,
1986
, “
Contraction on Hydrated Collagen Gels by Fibroblasts: Evidence for Two Mechanisms by Which Collagen Fibrils are Stabilized
,”
Collagen Rel. Res.
, Vol.
6
, 1986, p.
515
515
.
24.
Guidry
C.
, and
Grinnell
F.
,
1987
, “
Heparin Modulates the Organization of Hydrated Collagen Gels and Inhibits Gel Contraction by Fibroblasts
,”
J. Cell Biol.
, Vol.
104
, No.
4
, p.
1097
1097
.
25.
Harris
A. K.
,
Stopak
D.
, and
Wild
P.
,
1981
, “
Fibroblast Traction as a Mechanism for Collagen Morphogenesis
,”
Nature
, Vol.
290
, pp.
249
251
.
26.
Higgs, P. G., and Ball, R. C., 1990, “A ‘Reel-Chain’ Model for the Elasticity of Biopolymer Gels, and Its Relationship to Slip-Link Treatments of Entanglements,” Physical Networks: Polymers and Gels, W. Burchard and S. B. Ross-Murphy, eds., Elsevier Applied Science, London, pp. 185–94.
27.
Holmes
M. H.
,
1986
, “
Finite Deformation of Soft Tissue: Analysis of a Mixture Model in Uniaxial Compression
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, No.
4
, pp.
372
381
.
28.
Jen
C. J.
, and
Mclntirc
L. V.
,
1982
, “
The Structural Properties and Contractile Force of a Clot
,”
Cell Motility
, Vol.
2
, pp.
445
455
.
29.
Jen
C. J.
, and
Mclntire
L. V.
,
1986
, “
Platelet Microtubules in Clot Structure Formation and Contractile Force Generation: Investigation of a Controversy
,”
Thrombosis and Haemostasis
, Vol.
56
, No.
1
, pp.
23
27
.
30.
Kolodney
M. S.
, and
Wysolmcrski
R. B.
,
1992
, “
Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: A Quantitative Study
,”
J. Cell Biol.
, Vol.
117
, No.
1
, pp.
73
82
.
31.
Kramer, O., ed., 1988, Biological and Synthetic Polymer Networks, Elsevier Applied Science, London.
32.
Lin, C. C., and Segel, L. A., 1974, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Publishing Co., New York.
33.
Macosko, C. W., 1994, Rheology: Principles, Measurements and Applications, Poughkccpsie: VCH.
34.
Mak
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, p.
123
123
.
35.
Modis, L., 1991, Organizations of the Extracellular Matrix: A Polarization Microscopic Approach, CRC Press, Boca Raton.
36.
Montandon
D.
,
D’andiran
G.
, and
Gabbiani
G.
,
1977
, “
The Mechanism of Wound Contraction and Epithelialization
,”
Clin. Plast. Surg.
, Vol.
4
, No.
3
, p.
325
325
.
37.
Moon
A. G.
, and
Tranquillo
R. T.
,
1993
, “
The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force—Part 1. Continuum Model
,”
AIChE J.
, Vol.
39
, pp.
163
177
.
38.
Moon, A. G., and Tranquillo, R. T., 1995, “Rheological Characterization of Reconstituted Type I Collagen Gels,” in preparation.
39.
Mow
V. C.
,
Kuei
S. C.
,
Lai
W. M.
, and
Armstrong
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
73
84
.
40.
Mow, V. C. Kwan, M. K., Lai, W. M., and Holmes, M. H., 1986, “A Finite Deformation Theory for Nonlinearly Permeable Soft Hydrated Biological Tissues,” Schmid-Schonbien, G. W., Woo, S. L.-Y., and Zweifach, B. W., eds., Frontiers in Biomechanics, Springer-Verlag, New York, pp. 153–179.
41.
Murray
J. D.
, and
Oster
G. F.
,
1984
, “
Cell Traction Models for Generating Pattern and Form in Morphogenesis
,”
J. Math. Biol.
, Vol.
19
, No.
3
, p.
265
265
.
42.
Murray
J. D.
,
Oster
G. F.
, and
Harris
A. K.
,
1983
, “
A Mechanical Model for Mesenchymal Morphogenesis
,”
J. Math. Biol.
, Vol.
17
, No.
1
, p.
125
125
.
43.
Nelb
G. W.
,
Gerth
C.
, and
Ferry
J. D.
,
1976
, “
Rheology of Fibrin Clots. III. Shear Creep and Creep Recovery of Fine Ligated and Coarse Unligated Clots
,”
Biophys. Chem.
, Vol.
5
, pp.
377
387
.
44.
Oster
G. F.
,
Murray
J. D.
, and
Harris
A. K.
,
1983
, “
Mechanical Aspects of Mesenchymal Morphogenesis
,”
J. Embryol. Exp. Morphol.
, Vol.
78
, p.
83
83
.
45.
Pineri
M. H.
,
Escoubes
M.
, and
Roche
G.
,
1978
, “
Water-Collagen Interactions: Calorimetric and Mechanical Experiments
,”
Biopolymers
, Vol.
17
, pp.
2799
2815
.
46.
Reid
G. G.
,
Lackie
J. M.
, and
Gorham
S. D.
,
1990
, “
The Behavior of BHK Cells and Neutrophil Leukocytes on Collagen Gels of Defined Mechanical Strength
,”
Cell Biol. Intern. Rep.
, Vol.
14
, No.
11
, p.
1033
1033
.
47.
Scherer
G. W.
,
1989
, “
Mechanics of Syneresis—I. Theory
.”
J. Non. Cryst. Solids
, Vol.
108
, pp.
18
27
.
48.
Scherer
G. W.
,
Hdach
H.
, and
Phalippou
J.
,
1991
, “
Thermal Expansion of Gels: A Novel Method for Measuring Permeability
,”
J. Non-Cryst. Solids
, Vol.
130
, pp.
157
170
.
49.
Schor
S. L.
,
1980
, “
Cell Proliferation and Migration on Collagen Substrata In Vitro
,”
J. Cell Sci.
, Vol.
41
, p.
159
159
.
50.
Schwartz
M. H.
,
Leo
P. H.
, and
Lewis
J. L.
,
1994
, “
A Microstructural Model of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
27
, pp.
865
873
.
51.
Segel, L. A., 1980, Mathematical Models in Molecular and Cellular Biology, Cambridge University Press, New York.
52.
Sherratt
J. A.
, and
Lewis
J.
,
1993
, “
Stress-Induced Alignment of Actin Filaments and the Mechanics of Cytogel
,”
Bulletin of Methematical Biology
, Vol.
55
, pp.
637
654
.
53.
Stopak
D.
, and
Harris
A. K.
,
1982
, “
Connective Tissue Morphogenesis by Fibroblast Traction. I. Tissue Culture Observations
,”
Dev. Biol.
, Vol.
90
, No.
2
, pp.
383
396
.
54.
Tranquillo
R. T.
,
Durrani
M. A.
, and
Moon
A. G.
,
1992
, “
Tissue Engineering Science: Consequences of Cell Traction Force
,”
Cytotechnology
, Cytotech., Vol.
10
,
225
250
.
55.
Tranquillo, R. T., Girton, T. S., Bromberek, B. A., Triebes, T. G., and Moordaian, D. L., 1995, “Mangentically-Oriented Tissue-Equivalent Tubes: Application to a Circumferentially-Oriented Media-Equivalent,” Biomaterials (accepted).
56.
Yannas
I. V.
,
1972
, “
Collagen and Gelatin in the Solid State
,”
J. Macromol. Sci.—Revs. Macromol. Chem.
, Vol.
C7
, No.
1
, pp.
49
104
.
57.
Yannas
I. V.
,
Burke
J. F.
,
Orgill
D. P.
, and
Skrabut
E. M.
,
1982
, “
Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin
,”
Science
, Vol.
215
, No.
4529
, p.
174
174
.
This content is only available via PDF.
You do not currently have access to this content.