A thermal method has been developed to quantify continuous perfusion changes with self-calibration. A dynamic, one-dimensional bio-heat transfer model of the thermal probe and tissue describes the system response to either continuous or transient heating. A nonlinear least-squares fit of the model to experimental data yields estimates of the baseline perfusion and other model parameters. With a partial analytical solution of the model, the optimal estimation procedure is two orders of magnitude more efficient than with a total numerical solution of the model system. Experimental data is used to estimate the operating relations between perfusion and the temperature measurement. A new procedure has also been presented to obtain the dynamic response of the system for continuous measurement of perfusion.

1.
Abramovich-Sivan
S.
,
Benary
V.
,
Kaspi
T.
, and
Akselrod
S.
,
1991
, “
A Combined Heat Clearance Method for Tissue Blood Flow Measurement
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
438
445
.
2.
Anderson
G. T.
,
Valvano
J. W.
, and
Santos
R. R.
,
1992
, “
Self-Heated Thermistor Measurements of Perfusion
,”
IEEE Trans. Biomed. Eng.
, Vol.
39
, pp.
877
885
.
3.
Arkin
H.
,
Holmes
K. R.
,
Chen
M. M.
, and
Bottje
W. G.
,
1986
, “
Thermal Pulse Decay Method for Simultaneous Measurement of Local Thermal Conductivity and Blood Perfusion: A Theoretical Analysis
,”
Trans. ASME
, Vol.
108
, pp.
208
214
.
4.
Arkin
H.
,
Holmes
K. R.
, and
Chen
M. M.
,
1987
, “
Computer-Based System for Continuous On-Line Measurements of Tissue Blood Perfusion
,”
J. Biomed. Eng.
, Vol.
9
, pp.
38
45
.
5.
Aukland
K.
,
Bower
B. F.
, and
Berliner
R. W.
,
1964
, “
Measurement of Local Blood Flow with Hydrogen Gas
,”
Circ. Res.
, Vol.
14
, pp.
164
186
.
6.
Bowman
H. F.
,
Cravalho
E. G.
, and
Woods
M.
,
1975
, “
Theory, Measurement, and Application of Thermal Properties of Biomaterials
,”
Annu. Rev. Biophys. Bioeng.
, Vol.
4
, pp.
43
80
.
7.
Bowman, H. F., 1984, “Estimation of Tissue Blood Flow,” Heat Transfer in Medicine and Biology, Shitzer, A., and Eberthart, R. C., eds., Plenum, pp. 193–299.
8.
Brint
S.
,
Jacewicz
M.
,
Kiessling
M.
,
Tanabc
J.
, and
Pulsinelli
W. A.
,
1988
, “
Focal Brain Ischemia in the Rat: Methods for Reproducible Neocortical Infarction Using Tandem Occlusion of the Distal Middle Cerebral and Ipsilateral Common Carotid Arteries
,”
J. Cereb. Blood Flow Metab.
, Vol.
8
, pp.
474
485
.
9.
Chen
M. M.
,
Holmes
K. R.
, and
Rupinskas
V.
,
1981
, “
Pulse-Decay Method for Measuring the Thermal Conductivity of Living Tissues
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
253
260
.
10.
Dennis
J. E.
,
Gay
D. M.
, and
Welseh
R. E.
,
1981
, “
An Adaptive Nonlinear Least-Squares Algorithm
,”
ACM Trans. Mathematical Software
, Vol.
7
, No.
3
, pp.
348
368
.
11.
Florence
G.
, and
Seylaz
J.
,
1992
, “
Rapid Autoregulation of Cerebral Blood Flow: a Laser-Doppler Flowmetry Study
,”
J. Cereb. Blood Flow Metab.
, Vol.
12
, pp.
674
680
.
12.
Ginsberg
M. D.
,
Smith
D. W.
,
Wachtel
M. S.
,
Gonzalez-Carvajal
M.
, and
Busto
R.
,
1986
, “
Simultaneous Determination of Local Cerebral Glucose Utilization and Blood Flow by Carbon-14 Double-Label Autoradiography: Method of Procedure and Validation Studies in the Rat
,”
J. Cereb. Blood Flow Metab.
, Vol.
6
, pp.
273
285
.
13.
Hindmarsh, A. C., and Sherman, A. H., 1982, LSODES: Livermore Solver for Ordinary Differential Equations with General Sparse Jacobian Matrices, Lawrence Livermore National Laboratory, Livermore, CA.
14.
Jiji
L. M.
,
Weinbaum
S.
, and
Lemons
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue heat Transfer—Part II: Model Formulation and Solutions
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
331
341
.
15.
Jones
S. C.
,
Bose
B.
,
Furlan
A. J.
,
Friel
H. T.
,
Easley
K. A.
,
Meredith
M. P.
, and
Little
J. R.
,
1989
, “
CO2 Reactivity and Heterogeneity of Cerebral Blood Flow in Ischemic, Border Zone and Normal Cortex
,”
Am. J. Physiol.
, Vol.
257
, pp.
H473–H482
H473–H482
.
16.
Kety, S. S., 1966, “The Cerebral Circulation,” Handbook of Physiology-Neurophysiology III, pp. 1751–1760.
17.
Kety
S. S.
, and
Schmidt
C. F.
,
1948
, “
The Nitrous Oxide Method for the Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values
,”
J. Clin. Invest.
, Vol.
27
, pp.
476
483
.
18.
Kopaniky, D. R., 1975, “An Investigation into the Role of Anterior Pituitary Blood Flow in the Regulation of ACTH Secretion,” Ph.D. dissertation, Case Western Reserve University, School of Medicine, OH.
19.
Landau
W. M.
,
Freygang
W. H.
,
Roland
L. P.
,
Sokoloff
L.
, and
Kety
S. S.
,
1955
, “
The Local Circulation of the Living Brain; Values in the Unanesthetized and Anesthetized Cat
,”
Trans. Am. Neurol. Assoc.
, Vol.
80
, pp.
125
129
.
20.
McCaffrey
T. V.
, and
McCook
R. D.
,
1975
, “
A Thermal Method for the Determination of Tissue Blood Flow
,”
J. Appl. Physiol.
, Vol.
39
, pp.
170
173
.
21.
Olshausen
K.
,
Gross
R.
, and
Kirchheim
H.
,
1976
, “
An Isothermal Flowmeter with Improved Frequency Response for Measuring Tissue Blood Flow
,”
Pflugers Arch.
, Vol.
367
, pp.
97
102
.
22.
Otsuka
T.
,
Wei
L.
,
Acuff
V. R.
,
Shimizu
A.
,
Pettigrcw
K. D.
,
Patlak
C. S.
, and
Fenstermacher
J. D.
,
1991
, “
Variation in Local Cerebral Blood Flow Response to High-Dose Pentobarbital Sodium in the Rat
,”
Am. J. Physiol.
, Vol.
261
, pp.
H110–H120
H110–H120
.
23.
Patel
P. A.
,
Valvano
J. W.
,
Pearce
J. A.
,
Prahl
S. A.
, and
Denham
C. R.
,
1987
, “
A Self-Heated Thermistor Technique to Measure Effective Thermal Properties from the Tissue Surface
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
330
335
.
24.
Pennes
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
, Vol.
1
, pp.
93
122
.
25.
Perl
W.
,
1962
, “
Heat and Matter Distribution in Body Tissues and the Determination of Tissue Blood Flow by Local Clearance Methods
,”
J. Theor. Biol.
, Vol.
2
, pp.
201
235
.
26.
Sapirstein
L. A.
,
1958
, “
Regional Blood Flow by Fractional Distribution of Indicators
,”
Am. J. Physiol.
, Vol.
193
, pp.
161
168
.
27.
Schiesser, W. E., 1994, Computational Mathematics in Engineering and Applied Science, CRCPress, Boca Raton, FL.
28.
Thermometries, 1986, Thermistors Catalog No. 181-D, Thermometries, Edison, NJ.
29.
Valvano
J. W.
,
Allen
J. T.
, and
Bowman
H. F.
,
1984
a, “
The Simultaneous Measurement of Thermal Conductivity, Thermal Diffusivity, and Perfusion in Small Volumes of Tissue
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
192
197
.
30.
Valvano
J. W.
,
Allen
J. T.
,
Walsh
J. T.
,
Hnatowich
D. J.
,
Tomera
J. F.
,
Brunengraber
H.
, and
Bowman
H. F.
,
1984
b, “
An Isolated Rat Liver Model for the Evaluation of Thermal Techniques to Quantify Perfusion
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
105
, pp.
187
191
.
31.
Wei
D.
,
Saidel
G. M.
, and
Jones
S. C.
,
1990
, “
Optimal Design of Thermistor Probe for Surface Measurement of Cerebral Blood Flow
,”
IEEE Trans. Biomed. Eng.
, Vol.
37
, pp.
1159
1172
.
32.
Wei, D., 1993, “Quantitative and Continuous Measurement of Cerebral Blood Flow by a Thermal Method,” Ph.D. dissertation, Case Western Reserve University, Cleveland, OH.
33.
Wei
D.
,
Saidel
G. M.
, and
Jones
S. C.
,
1994
, “
A Thermal Method for Continuous Measurement of Cerebral Perfusion
,”
Med. Biol. Eng. Comput.
, Vol.
32
, pp.
481
488
.
34.
Wei
D.
,
Shea
M.
,
Saidel
G. M.
, and
Jones
S. C.
,
1993
, “
Validation of Continuous Thermal Measurements of Cerebral Blood Flow by Arterial Pressure Change
,”
J. Cereb. Blood Flow Metab.
, Vol.
13
, pp.
693
701
.
35.
Weinbaum
S.
,
Jiji
L. M.
, and
Lemons
D. E.
,
1984
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
321
330
.
This content is only available via PDF.
You do not currently have access to this content.