The total surface stress measured in vitro on acetabular cartilage when step-loaded by an instrumented hemiprosthesis are partitioned into fluid and cartilage network stresses using a finite element model of the cartilage layer and measurements of the layer consolidation. The finite element model is based on in situ measurements of cartilage geometry and constitutive properties. Unique instrumentation was employed to collect the geometry and constitutive properties and pressure and consolidation data. When loaded, cartilage consolidates and exudes its interstitial fluid through and from its solid network into the interarticular gap. The finite element solutions include the spatial distributions of fluid and network stresses, the normal flow velocities into the gap, and the contact network stresses at the cartilage surface, all versus time. Even after long-duration application of physiological-level force, fluid pressure supports 90 percent of the load with the cartilage network stresses remaining well below the drained modulus of cartilage. The results support the “weeping” mechanism of joint lubrication proposed by McCutchen.

This content is only available via PDF.
You do not currently have access to this content.