The study of pulsatile flows is relevant to many areas of applications. Typical applications include aerodynamics, biofluid mechanics, wind flows, and gas transport. Transition to turbulence during pulsatile flow is physiologically and clinically important. It has been suggested as a possible mechanism to enhance the transport of gases during high-frequency ventilation, may be related to valvular regurgitation and heart murmurs and to post stenotic dilatation and aneurysms. Measurements in a pulsatile pipe flow with a superimposed mean flow are reported. Data were taken in a water flow with mean Reynolds numbers in the range of 0 < Rem < 3000, oscillating Reynolds numbers of 0 < Reω < 4000, and Stokes parameter 7 < λ < 15. Velocity profiles of various phases of the flow, condition for flow reversal, and pressure losses were measured. The adequacy of a quasi-steady-state model is discussed. Condition for transition is determined by visually inspecting velocity signals at the centerline.

This content is only available via PDF.
You do not currently have access to this content.