An experimental approach for an in vitro investigation of some aspects of dynamic force transmission through the human knee joint is presented. Essentially, the behavior of the joint was analyzed by measuring the responses to low level random excitation of the tibia while the femur was clamped. A global equilibrium position of the joint was attained by exerting static forces on the tibia via three tendinous muscle attachments. The responses to the applied dynamic loads were measured using a multi-channel dynamic measuring system and quantified by means of transfer function analysis techniques. Some preliminary experimental results are presented to illustrate the effects of variation of the direction and the magnitude of the applied dynamic and static loads.

This content is only available via PDF.
You do not currently have access to this content.