Stump stresses were correlated to prosthesis loads for two unilateral, below-knee amputees over a range of flexion-extension angular adjustments. Normal stresses on the patellar tendon and gastrocnemius were related to the axial force and flexion-extension moment of the prosthesis via a matrix equation. Elements of this matrix, influence factors calculated by least-squares algorithms, identified the contributions of each time-dependent load component acting to produce the time-dependent normal stresses. The flexion-extension angular sensitivity of the way these sagittal plane loads combined to produce normal stresses was included in the matrix equation via a first-order Maclaurin series. Highly favorable correlation coefficients between empirically measured and theoretically predicted stump stresses were calculated. This demonstrated that, in future studies, using an influence-factor matrix holds promise for quantifying sensitivities of normal stresses of the stump to multiple adjustments in prostheses.

This content is only available via PDF.
You do not currently have access to this content.