The phenomenon of high-amplitude inflation waves resulting from a sharp axial acceleration of the aorta, as may ocur in road accidents, is investigated theoretically. The aorta is modeled as an axisymmetric tapered membranic shell (tube) made of an incompressible, nonlinear viscoelastic material with cylindrical orthotropy. It is filled with an inviscid, incompressible fluid whose flow is considered as quasi-one dimensional along the tube axis. The equations of motion of the tube and of the fluid are solved numerically, by using a two-step explicit scheme, for several axial acceleration profiles. The solutions shows that an inflation wave is generated and it propagates in opposite direction to that of the acceloeration. The wall stresses, deformations and their time derivatives as well as fluid velocity and pressure are determined along the tube at different time intervals. Peak axial and circumferential stresses are high, with the latter far exceeding the former. These stresses may cause rupture of the aorta.

This content is only available via PDF.
You do not currently have access to this content.