The effects of the circulation rate in capillaries, the intensity of O2 consumption by nerve cells and the capillary network density on the O2 tension distribution in the cerebral cortex have been studied, utilizing a mathematical model simulating actual neuron-capillary relationships. The model has been written as a system of equations in partial derivatives, its solution obtained by the net-point method. Regulatory variations of the capillary circulation rate in certain cerebral microregions have been shown to ensure similar changes in oxygen supply throughout the region. A drop of the pO2 level in a cerebral microregion with a rising O2 consumption by nerve cells is shown to be due, by 75 percent, to the increase of O2 consumption and by 25 percent, to the lower pO2 in the capillaries. Conversely, an increase in pO2 in microregions resulting from a lower O2 consumption by neurons is due by 75 percent, to a pO2 rise in capillaries and by 25 percent, at the expense of an O2 consumption decrease. In cerebral regions differing in capillary network density by 20 percent, changes in the conditions for oxygen supply to tissue are due by 1/3 to pO2 variations in the capillaries and by 2/3 to alterations in the diffusion distances.

This content is only available via PDF.
You do not currently have access to this content.