Effects of the consistency variation on the peristaltic transport of a non-Newtonian power-law fluid fluid through a tube have been investigated by taking into account the existence of a peripheral layer. It is shown that the flow rate flux, for zero pressure drop, increases as the amplitude of the peristaltic wave increases but it decreases due to the pseudoplastic nature of the fluid. It is also noted that, for zero pressure drop, the flux does not depend on the consistency of peripheral layer while the friction decreases as this consistency decreases. However, for nonzero pressure drop, the flux increases and the friction force decreases as the consistency of peripheral layer fluid decreases.

This content is only available via PDF.
You do not currently have access to this content.