A new electronic ski binding has been designed which may better protect skiers from lower extremity injuries. A four-step procedure for developing binding release criteria aimed at preventing specific injuries is outlined. Using simplified biomechanical models, the release criteria for tibia fracture in both torsion and flexion are derived. A binding design which embodies the derived release criteria is described. The binding consists of three subsystems: 1) a dynamometer, 2) an analog computer controller, and 3) an electromechanical release mechanism. The strain gage dynamometer directly measures torsion and bending moments between the boot and ski. An analog computer controller processes dynamometer signals. Dual release mode capability is achieved by parallel solution of differential equations which model the leg in both medial-lateral rotation and flexion. When the model solution reaches a critical value, the controller actuates the release mechanism. The release mechanism incorporates a unique closed circuit hydraulic system which rigidly locks the boot to the ski until release. Laboratory tests on a prototype confirm that the computer-controlled binding prevents inadvertent release under noninjurious high-magnitude, short-duration loads but releases before quasi-static loads reach injurious levels.

This content is only available via PDF.
You do not currently have access to this content.