Abstract

In this article, we present a stochastic approach for the reliability evaluation of specific traffic scenarios as one component in the validation procedure of advanced driver assistance systems (ADAS). In this analysis, the control device is represented as a simulation model using software-in-the-loop technology. Specific inputs of this simulated controller are modeled as scalar random inputs. Based on a definition of a failure criterion, the well-known reliability method can be applied. In the present article, a variance-reduced importance sampling strategy for multiple failure regions is presented, which was developed for a scenario-based safety assessment framework.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Favaro
,
F.
,
Eurich
,
S.
,
Rizvi
,
S.
,
Agarwal
,
S.
,
Mahmood
,
S.
, and
Nader
,
N.
,
2019
, “
PEGASUS Method: An Overview
,” https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf, Accessed April 18, 2024.
2.
Pütz
,
A.
,
Zlocki
,
A.
,
Bock
,
J.
, and
Eckstein
,
L.
,
2017
, “
System Validation of Highly Automated Vehicles With a Database of Relevant Traffic Scenarios
,”
12th ITS European Congress
,
Strasbourg, France
,
June 19–22
, pp.
1
8
.
3.
Ubben
,
P. T.
,
2022
, “
Validation of Level 3 Advanced Driver Assistance Using Reliability Analysis Strategies
,”
19th Optimization and Stochastic Days
,
Weimar, Germany
,
June 24
, pp.
1
7
.
4.
UN Regulation No. 157
,
2021
, “
Uniform Provisions Concerning the Approval of Vehicles With Regard to Automated Lane Keeping Systems
,” Report E/ECE/TRANS/505/Rev.3/Add.156,
Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations
, https://unece.org/sites/default/files/2021-03/R157e.pdf, Accessed April 18, 2024.
5.
Kalra
,
N.
, and
Paddock
,
S. M.
,
2016
, “
Driving to Safety: How Many Miles of Driving Would it Take to Demonstrate Autonomous Vehicle Reliability?
,”
Trans. Res. Part A: Policy Practice
,
94
(
1
), pp.
182
193
.
6.
Leitner
,
A.
,
Watzenig
,
D.
, and
Ibanez-Guzman
,
J.
,
2020
,
Validation and Verification of Automated Systems
,
Springer Nature Switzerland
,
Cham, Switzerland
.
7.
Wood
,
M.
,
Robbel
,
P.
,
Maass
,
M.
,
Tebbens
,
R. D.
,
Meijs
,
M.
,
Harb
,
M.
,
Reach
,
J.
,
Robinson
,
K.
,
Wittmann
,
D.
,
Srivastava
,
T.
,
2019
, “Safety First for Automated Driving Project Report, Aptiv, Audi, BMW, Baidu, Continental Teves, Daimler, FCA, HERE, Infineon Technologies, Intel, Volkswagen,” https://group.mercedes-benz.com/documents/innovation/other/safety-first-for-automated-driving.pdf, Accessed April 18, 2024.
8.
Schwalb
,
E.
,
2021
, “
Analysis of Hazards for Autonomous Driving
,”
J. Auto. Vehicl. Syst.
,
1
(
2
), p.
021003
.
9.
Baumann
,
D.
,
Pfeffer
,
R.
, and
Sax
,
E.
,
2021
, “
Automatic Generation of Critical Test Cases for the Development of Highly Automated Driving Functions
,”
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)
,
Helsinki, Finland
,
Apr. 25–May 19
,
IEEE
, pp.
1
5
.
10.
Reichenbächer
,
C.
,
Rasch
,
M.
,
Kayatas
,
Z.
,
Wirthmüller
,
F.
,
Hipp
,
J.
,
Dang
,
T.
, and
Bringmann
,
O.
,
2022
, “
Automatic Generation of Critical Test Cases for the Development of Highly Automated Driving Functions
,”
Proceedings 8th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS)
,
Online
,
Apr. 27–29
, pp.
1
9
.
11.
Weber
,
H.
,
Bock
,
J.
,
Klimke
,
J.
,
Roesener
,
C.
,
Hiller
,
J.
,
Krajewski
,
R.
,
Zlocki
,
A.
, and
Eckstein
,
L.
,
2019
, “
A Framework for Definition of Logical Scenarios for Safety Assurance of Automated Driving
,”
Traffic Injury Prevent.
,
20
(
Sup. 1
), pp.
65
70
.
12.
Ma
,
Y.
,
Sun
,
C.
,
Chen
,
J.
,
Cao
,
D.
, and
Xiong
,
L.
,
2022
, “
Verification and Validation Methods for Decision-Making and Planning of Automated Vehicles: A Review
,”
IEEE Trans. Intell. Vehicl.
,
7
(
3
), pp.
480
498
.
13.
Menzel
,
T.
,
Bagschik
,
G.
, and
Maurer
,
M.
,
2018
, “
Scenarios for Development, Test and Validation of Automated Vehicles
,”
2018 IEEE Intelligent Vehicles Symposium (IV)
,
Changshu, China
,
June 26– July 1
,IEEE, pp.
1821
1827
.
14.
Wirthmüller
,
F.
,
Klimke
,
M.
,
Schlechtriemen
,
J.
,
Hipp
,
J.
, and
Reichert
,
M.
,
2020
,
“A Fleet Learning architecture for Enhanced Behavior Predictions During Challenging External Conditions
,”
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Canberra, Australia
,
Dec. 1–4
, IEEE, pp.
2739
2745
.
15.
Wirthmüller
,
F.
,
Hipp
,
J.
,
Reichenbächer
,
C.
, and
Reichert
,
M.
,
2021
, “
The Atlas of Lane Changes: Investigating Location-Dependent Lane Change Behaviors Using Measurement Data From a Customer Fleet
,”
2021 IEEE International Intelligent Transportation Systems Conference (ITSC)
,
Indianapolis, IN
,
Sept. 19–22
,
IEEE
, pp.
1225
1232
.
16.
Wirthmüller
,
F.
,
Schlechtriemen
,
J.
,
Hipp
,
J.
, and
Reichert
,
M.
,
2020
, “
Teaching Vehicles to Anticipate: A Systematic Study on Probabilistic Behavior Prediction Using Large Data Sets
,”
IEEE Trans. Intell. Trans. Syst.
,
22
(
11
), pp.
7129
7144
.
17.
Rasch
,
M.
,
Ubben
,
P. T.
,
Most
,
T.
,
Bayer
,
V.
, and
Niemeier
,
R.
,
2019
, “
Safety Assessment and Uncertainty Quantification of Automated Driver Assistance Systems Using Stochastic Analysis Methods
,”
NAFEMS World Congress
,
Quebec, Canada
,
June 17–20
, pp.
1
18
.
18.
Bock
,
J.
,
Krajewski
,
R.
,
Eckstein
,
L.
,
Klimke
,
J.
,
Sauerbier
,
J.
, and
Zlocki
,
A.
,
2018
, “
Data Basis for Scenario-Based Validation of HAD on Highways
,”
27th Aachen Colloquium Automobile and Engine Technology
,
Aachen, Germany
,
Oct. 8–10
, pp.
1389
1404
.
19.
Neurohr
,
C.
,
Westhofen
,
L.
,
Butz
,
M.
,
Bollmann
,
M. H.
,
Eberle
,
U.
, and
Galbas
,
R.
,
2021
, “
Criticality Analysis for the Verification and Validation of Automated Vehicles
,”
IEEE Access
,
9
(
1
), pp.
18016
18041
.
20.
Karian
,
Z. A.
, and
Dudewicz
,
E. J.
,
2000
,
Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
21.
Ansys Dynardo GmbH
,
2022
, Ansys optiSLang User Documentation, 2023R1 ed., Weimar, Germany, https://www.ansys.com/products/connect/ansys-optislang, Accessed April 18, 2024.
22.
Nataf
,
A.
,
1962
, “
Détermination Des Distributions De Probabilités Dont Les Marges Sont Données.
,”
Compt. Rendus de l’Acad. des Sci.
,
225
(
1
), pp.
42
43
.
23.
Liu
,
P.-L.
, and
Der Kiureghian
,
A.
,
1986
, “
Multivariate Distribution Models with Prescribed Marginals and Covariances
,”
Probabilistic. Eng. Mech.
,
1
(
2
), pp.
105
112
.
24.
Bucher
,
C.
,
2009
,
Computational Analysis of Randomness in Structural Mechanics
,
CRC Press, Taylor & Francis Group
,
London
.
25.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Bourgund
,
U.
, and
Bucher
,
C. G.
,
1986
, “
Importance Sampling Procedure Using Design Points (ISPUD)—A User’s Manual
,”
Report No. 8-86, Institut für Mechanik, Universität Innsbruck
,
Innsbruck, Austria
.
27.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
,
1998
, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Saf.
,
20
(
1
), pp.
37
49
.
28.
Geyer
,
S.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2019
, “
Cross Entropy-Based Importance Sampling Using Gaussian Densities Revisited
,”
Struct. Saf.
,
76
(
1
), pp.
15
27
.
29.
Bucher
,
C. G.
,
1988
, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Saf.
,
5
(
2
), pp.
119
126
.
30.
Katsuki
,
S.
, and
Frangopol
,
D. M.
,
1994
, “
Hyperspace Division Method for Structural Reliability
,”
J. Eng. Mech.
,
120
(
11
), pp.
2405
2427
.
31.
Most
,
T.
, and
Will
,
J.
,
2011
, “
Sensitivity Analysis Using the Metamodel of Optimal Prognosis
,”
8th Optimization and Stochastic Days
,
Weimar, Germany
,
Nov. 24–25
, pp.
1
17
.
32.
Most
,
T.
,
2011
, “
Efficient Sensitivity Analysis of Complex Engineering Problems
,”
M. H.
Faber
,
J.
Köhler
, and
K.
Nishijima
, eds.,
11th International Conference on Applications of Statistics and Probability in Civil Engineering
,
Zurich, Switzerland
,
Aug. 1–4
, pp.
2719
2726
.
You do not currently have access to this content.