Abstract

Path planning has been a hot research topic in robotics and is a vital functionality for autonomous systems. As the time complexity of traditional path planning algorithms grows rapidly with the complexity of the problem, evolutionary algorithms are widely applied for their near-optimal solutions. However, evolutionary algorithms can be trapped in a local optimum or converge to infeasible solutions, especially for large search spaces. As the problem scale increases, evolutionary algorithms often cannot find feasible solutions with random exploration, making it extremely challenging to solve long-range path-planning problems in environments with obstacles of various shapes and sizes. For long-range path planning of an autonomous ship, the current downsampling map approach may result in the disappearance of rivers and make the problem unsolvable. This paper introduces a novel area-based collision assessment method for genetic algorithm (GA) that can always converge to feasible solutions with various waypoints in large-scale and obstacle-filled environments. Waypoint-based crossover and mutation operators are developed to allow GA to modify the length of the solution during planning. To avoid the premature problem of GA, the mutation process is replaced by a self-improving process to let the algorithm focus the operations on any potential solutions before discarding them in the selection process. The case studies show that the proposed GA-focus algorithm converges faster than RRT* and can be applied to various large-scale and challenging problems filled with obstacles of different shapes and sizes, and find high-quality solutions.

References

1.
Patle
,
B. K.
,
Babu
,
L. G.
,
Pandey
,
A.
,
Parhi
,
D. R. K.
, and
Jagadeesh
,
A.
,
2019
, “
A Review: On Path Planning Strategies for Navigation of Mobile Robot
,”
Defence Technol.
,
15
(
4
), pp.
582
606
.
2.
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2020
, “
Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment
,”
IEEE J. Ocean. Eng.
,
45
(
3
), pp.
813
830
.
3.
Chen
,
G.
,
Luo
,
N.
,
Liu
,
D.
,
Zhao
,
Z.
, and
Liang
,
C.
,
2021
, “
Path Planning for Manipulators Based on an Improved Probabilistic Roadmap Method
,”
Rob. Comput.-Integr. Manuf.
,
72
, p.
102196
.
4.
Russell
,
S. J.
, and
Norvig
,
P.
,
2010
,
Artificial Intelligence: A Modern Approach
,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
5.
Nasir
,
J.
,
Islam
,
F.
,
Malik
,
U.
,
Ayaz
,
Y.
,
Hasan
,
O.
,
Khan
,
M.
, and
Muhammad
,
M. S.
,
2013
, “
RRT*-SMART: A Rapid Convergence Implementation of RRT*
,”
SAGE Publ.
,
10
(
7
), p.
299
.
6.
Fan
,
X.
,
Guo
,
Y.
,
Liu
,
H.
,
Wei
,
B.
, and
Lyu
,
W.
,
2020
, “
Improved Artificial Potential Field Method Applied for AUV Path Planning
,”
Math. Probl. Eng.
,
2020
, pp.
1
21
.
7.
Beser
,
F.
, and
Yildirim
,
T.
,
2018
, “
COLREGS Based Path Planning and Bearing Only Obstacle Avoidance for Autonomous Unmanned Surface Vehicles
,”
Proc. Comput. Sci.
,
131
, pp.
633
640
.
8.
Bhattacharya
,
P.
, and
Gavrilova
,
M. L.
,
2008
, “
Roadmap-Based Path Planning—Using the Voronoi Diagram for a Clearance-Based Shortest Path
,”
IEEE Rob. Autom. Mag.
,
15
(
2
), pp.
58
66
.
9.
Pan
,
Y.
,
Yang
,
Y.
, and
Li
,
W.
,
2021
, “
A Deep Learning Trained by Genetic Algorithm to Improve the Efficiency of Path Planning for Data Collection With Multi-UAV
,”
IEEE Access
,
9
, p.
1
.
10.
Panov
,
A. I.
,
Yakovlev
,
K. S.
, and
Suvorov
,
R.
,
2018
, “
Grid Path Planning With Deep Reinforcement Learning: Preliminary Results
,”
Proc. Comput. Sci.
,
123
, pp.
347
353
.
11.
Wang
,
X.
, and
Jin
,
Y.
,
2022
, “
Work Process Transfer Reinforcement Learning: Feature Extraction and Fine Tuning in Ship Collision Avoidance
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 86212, p. V002T02A069)
,
American Society of Mechanical Engineers
.
12.
Roberge
,
V.
,
Tarbouchi
,
M.
, and
Labonte
,
G.
,
2013
, “
Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning
,”
IEEE Trans. Ind. Inform.
,
9
(
1
), pp.
132
141
.
13.
Lazarowska
,
A.
,
2015
, “
Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation
,”
J. Navig.
,
68
(
2
), pp.
291
307
.
14.
Das
,
P. K.
, and
Jena
,
P. K.
,
2020
, “
Multi-Robot Path Planning Using Improved Particle Swarm Optimization Algorithm Through Novel Evolutionary Operators
,”
Appl. Soft Comput.
,
92
, p.
106312
.
15.
Wang
,
Y.
,
Yao
,
P.
, and
Dou
,
Y.
,
2019
, “
Monitoring Trajectory Optimization for Unmanned Surface Vessel in Sailboat Race
,”
Optik (Stuttgart)
,
176
, pp.
394
400
.
16.
Tang
,
G.
,
Tang
,
C.
,
Claramunt
,
C.
,
Hu
,
X.
, and
Zhou
,
P.
,
2021
, “
Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment
,”
IEEE Access
,
9
, pp.
59196
59210
.
17.
Kuffner
,
J. J.
, and
Lavalle
,
S. M.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), Vol. 2
,
IEEE
, pp.
995
1001
.
18.
Hu
,
C.
, and
Jin
,
Y.
,
2023
, “
Long-Range Risk-Aware Path Planning for Autonomous Ships in Complex and Dynamic Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p. 041007.
19.
Liu
,
Y.
, and
Bucknall
,
R.
,
2015
, “
Path Planning Algorithm for Unmanned Surface Vehicle Formations in a Practical Maritime Environment
,”
Ocean Eng.
,
97
, pp.
126
144
.
20.
Kang
,
Y.
,
Chen
,
W.
,
Zhu
,
D.
,
Wang
,
J.
, and
Xie
,
Q.
,
2018
, “
Collision Avoidance Path Planning for Ships by Particle Swarm Optimization
,”
J. Mar. Sci. Technol.
,
26
(
6
), pp.
777
786
.
21.
Luo
,
Q.
,
Wang
,
H.
,
Zheng
,
Y.
, and
He
,
J.
,
2020
, “
Research on Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm
,”
Neural Comput. Appl.
,
32
(
6
), pp.
1555
1566
.
22.
Le
,
A. V.
,
Nhan
,
N. H. K.
, and
Mohan
,
R. E.
,
2020
, “
Evolutionary Algorithm-Based Complete Coverage Path Planning for Tetriamond Tiling Robots
,”
Sensors
,
20
(
2
), p.
445
.
23.
Xin
,
J.
,
Zhong
,
J.
,
Yang
,
F.
,
Cui
,
Y.
, and
Sheng
,
J.
,
2019
, “
An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle
,”
Sensors
,
19
(
11
), p.
2640
.
24.
Pehlivanoglu
,
Y. V.
, and
Pehlivanoglu
,
P.
,
2021
, “
An Enhanced Genetic Algorithm for Path Planning of Autonomous UAV in Target Coverage Problems
,”
Appl. Soft Comput.
,
112
, p.
107796
.
25.
Shivgan
,
R.
, and
Dong
,
Z.
,
2020
, “
Energy-Efficient Drone Coverage Path Planning Using Genetic Algorithm
,”
2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)
,
Virtual Online
,
May 11–14
, pp.
1
6
.
26.
Liu
,
F.
,
Liang
,
S.
, and
Xian
,
X.
,
2014
, “
Optimal Path Planning for Mobile Robot Using Tailored Genetic Algorithm
,”
TELKOMNIKA Indonesian J. Elect. Eng.
,
12
(
1
), pp.
1
9
.
27.
Kim
,
H.
,
Kim
,
S.
,
Jeon
,
M.
,
Kim
,
J.
,
Song
,
S.
, and
Paik
,
K.
,
2017
, “
A Study on Path Optimization Method of an Unmanned Surface Vehicle Under Environmental Loads Using Genetic Algorithm
,”
Ocean Eng.
,
142
, pp.
616
624
.
28.
Liang
,
Y.
, and
Wang
,
L.
,
2020
, “
Applying Genetic Algorithm and Ant Colony Optimization Algorithm Into Marine Investigation Path Planning Model
,”
Soft Comput.
,
24
(
11
), pp.
8199
8210
.
29.
Nazarahari
,
M.
,
Khanmirza
,
E.
, and
Doostie
,
S.
,
2019
, “
Multi-objective Multi-robot Path Planning in Continuous Environment Using an Enhanced Genetic Algorithm
,”
Expert Syst. Appl.
,
115
(
2019
), pp.
106
120
.
30.
Hao
,
K.
,
Zhao
,
J.
,
Yu
,
K.
,
Li
,
C.
, and
Wang
,
C.
,
2020
, “
Path Planning of Mobile Robots Based on a Multi-Population Migration Genetic Algorithm
,”
Sensors (Basel, Switzerland)
,
20
(
20
), p.
5873
.
31.
Cheng
,
K. P.
,
Mohan
,
R. E.
,
Nhan
,
N. H. K.
, and
Le
,
A. V.
,
2020
, “
Multi-objective Genetic Algorithm-Based Autonomous Path Planning for Hinged-Tetro Reconfigurable Tiling Robot
,”
IEEE Access
,
8
, pp.
121267
121284
.
32.
Zhao
,
M.
,
Ansari
,
N.
, and
Hou
,
E. S. H.
,
1994
, “
Mobile Manipulator Path Planning by a Genetic Algorithm
,”
J. Rob. Syst.
,
11
(
3
), pp.
143
153
.
33.
Segota
,
S. B.
,
Andelic
,
N.
,
Lorencin
,
I.
,
Saga
,
M.
, and
Car
,
Z.
,
2020
, “
Path Planning Optimization of Six-Degree-of-Freedom Robotic Manipulators Using Evolutionary Algorithms
,”
Int. J. Adv. Rob. Syst.
,
17
(
2
), p.
172988142090807
.
34.
Elhoseny
,
M.
,
Tharwat
,
A.
, and
Hassanien
,
A. E.
,
2018
, “
Bezier Curve Based Path Planning in a Dynamic Field Using Modified Genetic Algorithm
,”
J. Comput. Sci.
,
25
, pp.
339
350
.
35.
Ma
,
J.
,
Liu
,
Y.
,
Zang
,
S.
, and
Wang
,
L.
,
2020
, “
Robot Path Planning Based on Genetic Algorithm Fused With Continuous Bezier Optimization
,”
Comput. Intell. Neurosci.
,
2020
, p.
9813040
.
36.
Pehlivanoglu
,
Y. V.
,
Baysal
,
O.
, and
Hacioglu
,
A.
,
2007
, “
Path Planning for Autonomous UAV Via Vibrational Genetic Algorithm
,”
Aircraft Eng.
,
79
(
4
), pp.
352
359
.
37.
Pehlivanoglu
,
Y. V.
,
2012
, “
A New Vibrational Genetic Algorithm Enhanced With a Voronoi Diagram for Path Planning of Autonomous UAV
,”
Aerospace Sci. Technol.
,
16
(
1
), pp.
47
55
.
38.
Hu
,
Y.
, and
Yang
,
S. X.
,
2004
, “
A Knowledge Based Genetic Algorithm for Path Planning of a Mobile Robot
,”
IEEE International Conference on Robotics and Automation, 2004. Proceedings, ICRA'04, Vol. 5
,
New Orleans, LA
, pp.
4350
4355
.
39.
Altaharwa
,
I.
,
Sheta
,
A.
, and
Alweshah
,
M.
,
2014
, “
A Mobile Robot Path Planning Using Genetic Algorithm in Static Environment
,”
J. Comput. Sci.
,
4
(
4
), pp.
341
344
.
40.
Qu
,
H.
,
Xing
,
K.
, and
Alexander
,
T.
,
2013
, “
An Improved Genetic Algorithm With Co-Evolutionary Strategy for Global Path Planning of Multiple Mobile Robots
,”
Neurocomputing (Amsterdam)
,
120
, pp.
509
517
.
41.
Tuncer
,
A.
, and
Yildirim
,
M.
,
2012
, “
Dynamic Path Planning of Mobile Robots With Improved Genetic Algorithm
,”
Comput. Electr. Eng.
,
38
(
6
), pp.
1564
1572
.
42.
Tu
,
J.
, and
Yang
,
S. X.
,
2003
, “
Genetic Algorithm Based Path Planning for a Mobile Robot
,”
IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422) Vol. 1
, pp.
1221
1226
.
43.
Shorakaei
,
H.
,
Vahdani
,
M.
,
Imani
,
B.
, and
Gholami
,
A.
,
2016
, “
Optimal Cooperative Path Planning of Unmanned Aerial Vehicles by a Parallel Genetic Algorithm
,”
Robotica
,
34
(
4
), pp.
823
836
.
44.
Xiao
,
J.
,
Michalewicz
,
Z.
,
Zhang
,
L.
, and
Trojanowski
,
K.
,
1997
, “
Adaptive Evolutionary Planner/Navigator for Mobile Robots
,”
IEEE Trans. Evolution. Comput.
,
1
(
1
), pp.
18
28
.
45.
Tsai
,
C. C.
,
Huang
,
H. C.
, and
Chan
,
C. K.
,
2011
, “
Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation
,”
IEEE Trans. Ind. Electron.
,
58
(
10
), pp.
4813
4821
.
46.
Alvarez
,
A.
,
Caiti
,
A.
, and
Onken
,
R.
,
2004
, “
Evolutionary Path Planning for Autonomous Underwater Vehicles in a Variable Ocean
,”
IEEE J. Oceanic Eng.
,
29
(
2
), pp.
418
429
.
47.
Yu
,
X.
,
Jiang
,
N.
,
Wang
,
X.
, and
Li
,
M.
,
2023
, “
A Hybrid Algorithm Based on Grey Wolf Optimizer and Differential Evolution for UAV Path Planning
,”
Expert Syst. Appl.
,
215
, p.
119327
.
48.
Shi
,
K.
,
Huang
,
L.
,
Jiang
,
D.
,
Sun
,
Y.
,
Tong
,
X.
,
Xie
,
Y.
, and
Fang
,
Z.
,
2022
, “
Path Planning Optimization of Intelligent Vehicle Based on Improved Genetic and Ant Colony Hybrid Algorithm
,”
Front. Bioeng. Biotechnol.
,
10
, p.
905983
.
49.
Yu
,
Z.
,
Si
,
Z.
,
Li
,
X.
,
Wang
,
D.
, and
Song
,
H.
,
2022
, “
A Novel Hybrid Particle Swarm Optimization Algorithm for Path Planning of UAVs
,”
IEEE Int. Things J.
,
9
(
22
), pp.
22547
22558
.
50.
Zhang
,
T.
,
Xu
,
G.
,
Zhan
,
X.
, and
Han
,
T.
,
2022
, “
A New Hybrid Algorithm for Path Planning of Mobile Robot
,”
J. Supercomput.
,
78
(
3
), pp.
4158
4181
.
51.
Sui
,
F.
,
Tang
,
X.
,
Dong
,
Z.
,
Gan
,
X.
,
Luo
,
P.
, and
Sun
,
J.
,
2023
, “
ACO+ PSO+ A*: A Bi-Layer Hybrid Algorithm for Multi-task Path Planning of an AUV
,”
Comput. Ind. Eng.
,
175
, p.
108905
.
52.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2007
, “
K-Means++: The Advantages of Careful Seeding
,”
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms 2007
,
New Orleans, LA
,
Jan. 7–9
, pp.
1027
1035
.
53.
Sturtevant
,
N. R.
,
2012
, “
Benchmarks for Grid-Based Pathfinding
,”
IEEE Trans. Comput. Intell. AI Games
,
4
(
2
), pp.
144
148
.
54.
Weise
,
J.
, and
Mostaghim
,
S.
,
2021
, “
A Scalable Many-Objective Pathfinding Benchmark Suite
,”
IEEE Trans. Evol. Comput.
,
26
(
1
), pp.
188
194
.
55.
Liu
,
C.
,
Liu
,
A.
,
Wang
,
R.
,
Zhao
,
H.
, and
Lu
,
Z.
,
2022
, “
Path Planning Algorithm for Multi-Locomotion Robot Based on Multi-Objective Genetic Algorithm With Elitist Strategy
,”
Micromachines
,
13
(
4
), p.
616
.
56.
Ahmed
,
F.
, and
Deb
,
K.
,
2013
, “
Multi-Objective Optimal Path Planning Using Elitist Non-Dominated Sorting Genetic Algorithms
,”
Soft Comput.
,
17
(
7
), pp.
1283
1299
.
57.
Yan
,
C.
,
Shao
,
K.
,
Wang
,
X.
,
Zheng
,
J.
, and
Liang
,
B.
,
2021
, “
Reference Governor-Based Control for Active Rollover Avoidance of Mobile Robots
,”
2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Virtual Online
,
Oct. 17–20
.
You do not currently have access to this content.