Abstract

This paper presents an investigation of collaborative localization for heterogeneous robots, resulting in a scheme for relative localization of a heterogeneous team of low-cost mobile robots. A novel complementary Kalman filter (CKF) approach is presented to address collaborative localization and mapping by optimally estimating the error states of the team. This indirect filter optimally combines the inertial/visual proprioceptive measurements of each vehicle with stereoscopic measurements made by unmanned ground vehicles (UGVs). An analysis is presented for both CKF and simultaneous localization and mapping (SLAM) approaches on maps containing randomly placed obstacles. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team. Six behavioral strategies, specifying the role and behavior of each robot, are simulated and evaluated for both CKF and SLAM approaches on maps containing randomly placed obstacles. Results show that the sources of error, image quantization, asynchronous sensors, and a nonstationary bias were sufficiently modeled to estimate the pose of the aerial robot. The results demonstrate localization accuracies of 2–4 cm, on average, while the robots operate at a distance from each other between 1 m and 4 m. The best performing behavior for the CKF approach maintained an average positional error of 2.2 cm and a relative error of 0.30% of the distance traveled for the entire team at the conclusion of maneuvers. For all multi-UGV strategies, the CKF approach outperformed the best SLAM results by a 6.7 cm mean error (0.48% of distance traveled).

References

1.
Raju
,
V.
, and
Selekwa
,
M. F.
,
2021
, “
On the Mapping Problem in SLAM Approaches for Autonomous Robot Navigation
,”
International Mechanical Engineering Congress and Exposition (IMECE)
,
Columbus, OH
.
2.
Fankhauser
,
P.
,
Bloesch
,
M.
,
Krusi
,
P.
,
Diethelm
,
R.
,
Wermelinger
,
M.
,
Schneider
,
T.
,
Dymczyk
,
M.
,
Hutter
,
M.
, and
Siegwart
,
R.
,
2016
, “
Collaborative Navigation for Flying and Walking Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
.
3.
Forster
,
C.
,
Pizzoli
,
M.
, and
Scaramuzza
,
D.
,
2013
, “
Air-Ground Localization and Map Augmentation Using Monocular Dense Reconstruction
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
.
4.
Gawel
,
A.
,
Dube
,
R.
,
Surmann
,
H.
,
Nieto
,
J.
,
Siegwart
,
R.
, and
Cadena
,
C.
,
2017
, “
3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Shanghai, China
.
5.
Kaslin
,
R.
,
Fankhauser
,
P.
,
Stumm
,
E.
,
Taylor
,
Z.
,
Mueggler
,
E.
,
Delmerico
,
J.
,
Scaramuzza
,
D.
,
Siegwart
,
R.
, and
Hutter
,
M.
,
2016
, “
Collaborative Localization of Aerial and Ground Robots Through Elevation Maps
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Lausanne, Switzerland
.
6.
Oleynikova
,
H.
,
Burri
,
M.
,
Lynen
,
S.
, and
Siegwart
,
R.
,
2015
, “
Real-Time Visual-Inertial Localization for Aerial and Ground Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
.
7.
Piasco
,
N.
,
Marzat
,
J.
, and
Sanfourche
,
M.
,
2016
, “
Collaborative Localization and Formation Flying Using Distributed Stereovision
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
.
8.
Schmuck
,
P.
, and
Chli
,
M.
,
2017
, “
Multi-UAV Collaborative Monocular SLAM
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
.
9.
Shen
,
C.
,
Zhang
,
Y.
,
Li
,
Z.
,
Gao
,
F.
, and
Shen
,
S.
,
2017
, “
Collaborative Air-Ground Target Searching in Complex Environments
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Shanghai, China
.
10.
Cieslewski
,
T.
,
Choudhary
,
S.
, and
Scaramuzza
,
D.
,
2018
, “
Data-Efficient Decentralized Visual SLAM
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
.
11.
Breitenmoser
,
A.
,
Kneip
,
L.
, and
Siegwart
,
R.
,
2011
, “
A Monocular Vision-Based System for 6D Relative Robot Localization
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
.
12.
Dewan
,
A.
,
Mahendran
,
A.
,
Soni
,
N.
, and
Krishna
,
K.
,
2013
, “
Heterogeneous UGV-MAV Exploration Using Integer Programming
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
.
13.
Dias
,
D.
,
Ventura
,
R.
,
Lima
,
P.
, and
Martinoli
,
A.
,
2016
, “
On-Board Vision-Based 3D Relative Localization System for Multiple Quadrotors
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
.
14.
Faessler
,
M.
,
Mueggler
,
E.
,
Schwabe
,
K.
, and
Scaramuzza
,
D.
,
2014
, “
A Monocular Pose Estimation System Based on Infrared LEDs
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
.
15.
Mueggler
,
E.
,
Faessler
,
M.
,
Fontana
,
F.
, and
Scaramuzza
,
D.
,
2014
, “
Aerial-Guided Navigation of a Ground Robot Among Movable Obstacles
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Hokkaido, Japan
.
16.
Reardon
,
C.
, and
Fink
,
J.
,
2016
, “
Air-Ground Robot Team Surveillance of Complex 3D Environments
,”
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
Lausanne, Switzerland
.
17.
Teixeira
,
L.
,
Maffra
,
F.
,
Moos
,
M.
, and
Chli
,
M.
,
2018
, “
VI-RPE: Visual-Inertial Relative Pose Estimation for Aerial Vehicles
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2770
2777
.
18.
Yoon
,
D. D.
,
Ali
,
G. G. N.
, and
Ayalew
,
B.
,
2019
, “
Data Asociation an Fusion Framework for Decentralized Multi-Vehicle Cooperative Perception
,”
ASME 2019 International Design Engineering Technical Conference & Computers and Information in Engineering
,
Anaheim, CA
,
Aug. 18–21
, p. V003T01A019.
19.
Szeliski
,
R.
,
2020
,
Computer Vision: Algorithms and Applications
, 2nd ed.,
Springer
,
New York
.
20.
Schmuck
,
P.
, and
Chli
,
M.
,
2018
, “
CCMSLAM Robust and Efficient Centralized Collaborative Monocular Simultaneous Localization and Mapping for Robotic Teams
,”
J. Field Rob.
,
36
(
4
), pp.
763
781
.
21.
Van Opdenbosch
,
D.
, and
Steinbach
,
E.
,
2019
, “
Collaborative Visual SLAM Using Compressed Feature Exchange
,”
IEEE Rob. Autom. Lett.
,
4
(
1
), pp.
57
64
.
22.
Van Opdenbosch
,
D.
,
Oelsch
,
M.
,
Garcea
,
A.
,
Aykut
,
T.
, and
Steinbach
,
E.
,
2018
, “
Selection and Compression of Local Binary Features for Remote Visual SLAM
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
7270
7277
.
23.
US Army
,
2017
, Robotic and Autonomous Systems Strategy.
24.
Delmerico
,
J.
,
Mueggler
,
E.
,
Nitsch
,
J.
, and
Scaramuzza
,
D.
,
2017
, “
Active Autonomous Aerial Exploration for Ground Robot Path Planning
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
664
671
.
25.
Achtelik
,
M.
,
Zhang
,
T.
,
Kuhnlenz
,
K.
, and
Buss
,
M.
,
2009
, “
Visual Tracking and Control of a Quadcopter Using a Stereo Camera System and Inertial Sensors
,”
Proceedings of the International Conference on Mechatronics and Automation (ICMA)
,
Jilin, China
.
26.
Abruzzo
,
B.
,
Cappelleri
,
D. J.
, and
Mordohai
,
P.
,
2019
, “
A Collaborative Visual Localization Scheme for a Lowcost Heterogeneous Robotic Team With Non-Overlapping Perspectives
,”
Proceedings of the ASME IDETC Computers and Information in Engineering Conference
,
Anaheim, CA
.
27.
Dissanayake
,
M. W. M. G.
,
Newman
,
P.
,
Clark
,
S.
,
Durrant-Whyte
,
H. F.
, and
Csorba
,
M.
,
2001
, “
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
229
241
.
28.
Cunningham
,
A.
,
Indelman
,
V.
, and
Dellaert
,
F.
,
2013
, “
DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
.
29.
Waniek
,
N.
,
Biedermann
,
J.
, and
Conradt
,
J.
,
2015
, “
Cooperative SLAM on Small Mobile Robots
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
.
30.
Welch
,
G.
, and
Bishop
,
G.
,
2006
, “
An Introduction to the Kalman Filter
,” Technical Report, University of North Carolina, Chapel Hill.
31.
Maybeck
,
P. S.
,
1979
,
Stochastic Models, Estimation, and Control
,
Academic Press
,
Cambridge, MA
.
32.
Farrell
,
J.
,
2008
,
Aided Navigation GPS With High Rate Sensors
,
McGraw-Hill
,
New York
.
33.
Higgins
,
W. T.
,
1975
, “
A Comparison of Complementary and Kalman Filtering
,”
IEEE Trans. Aerosp. Electron. Syst.
,
11
(
3
), pp.
321
325
.
34.
Roumeliotis
,
S.
,
Sukhatme
,
G.
, and
Bekey
,
G.
,
1999
, “
Circumventing Dynamic Modeling: Evaluation of the Error-State Kalman Filter Applied to Mobile Robot Localization
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Detroit, MI
.
35.
Gonzalez
,
R.
,
Rodŕíguez
,
F.
,
Guzman
,
J. L.
, and
Berenguel
,
M.
,
2009
, “
Comparative Study of Localization Techniques for Mobile Robots Based on Indirect Kalman Filter
,”
Proceedings of the IFR International Symposium on Robotics
,
Barcelona, Spain
.
36.
Cooper
,
S.
, and
Durrant-Whyte
,
H.
,
1994
, “
A Frequency Response Method for Multi-Sensor High-Speed Navigation Systems
,”
Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems
,
Reno, NV
.
37.
Vasconcelos
,
J. F.
,
Cardeira
,
B.
,
Silvestre
,
C.
,
Oliveira
,
P.
, and
Batista
,
P.
,
2011
, “
Discrete-Time Complementary Filters for Attitude and Position Estimation: Design, Analysis and Experimental Validation
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
181
198
.
38.
Fuke
,
Y.
, and
Krotkov
,
E.
,
1996
, “
Dead Reckoning for a Lunar Rover on Uneven Terrain
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Minneapolis, MN
.
39.
Blostein
,
S. D.
, and
Huang
,
T. S.
,
1987
, “
Error Analysis in Stereo Determination of 3-D Point Positions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
9
(
6
), pp.
752
765
.
40.
Bouabdallah
,
S.
, and
Siegwart
,
R.
,
2005
, “
Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Barcelona, Spain
.
41.
Dentler
,
J.
,
Kannan
,
S.
,
Mendes
,
M.
, and
Voos
,
H.
,
2016
, “
A Real-Time Model Predictive Position Control With Collision Avoidance for Commercial Low-Cost Quadrotors
,”
Proceedings of the IEEE Conference on Control Applications (CCA)
,
Buenos Aires, Argentina
.
42.
Bristeau
,
P.-J.
,
Callou
,
F.
,
David
,
V.
, and
Petit
,
N.
,
2011
, “
The Navigation and Control Technology Inside the AR. Drone Micro UAV
,”
IFAC World Congress
,
Milano, Italy
.
43.
Hammer
,
P. C.
,
Cappelleri
,
D. J.
, and
Zavlanos
,
M. M.
,
2012
, “
TortoiseBot: Low-Cost ROS-Based Mobile 3D Mapping Platform
,” Technical Report, Stevens Institute of Technology.
44.
Olson
,
E.
,
2011
, “
AprilTag: A Robust and Flexible Visual Fiducial System
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
.
45.
Choset
,
H.
,
2001
, “
Coverage for Robotics—A Survey of Recent Results
,”
Ann. Math. Artif. Intell.
,
31
(
1/14
), pp.
113
126
.
46.
Matthies
,
L.
, and
Shafer
,
S. A.
,
1987
, “
Error Modeling in Stereo Navigation
,”
IEEE J. Rob. Autom.
,
3
(
3
), pp.
239
248
.
47.
Burri
,
M.
,
Nikolic
,
J.
,
Gohl
,
P.
,
Schneider
,
T.
,
Rehder
,
J.
,
Omari
,
S.
,
Achtelik
,
M. W.
, and
Siegwart
,
R.
,
2016
, “
The EuRoC Micro Aerial Vehicle Datasets
,”
Int. J. Rob. Res.
,
35
(
10
), pp.
1157
1163
.
You do not currently have access to this content.