Abstract

This study aims to develop and integrate guidance and control functions for applications such as rendezvous and docking, trajectory planning, entry descent and landing, executing maneuvers, and minimum fuel consumption. The utility of integrated nonlinear optimal control and explicit guidance functions replaces linear proportional-integral-derivative (PID) control laws. This approach leverages unmanned aerial vehicle (UAV) flight autonomy, thereby paving the way for creating an autonomous control technology with real-time target-relative guidance and re-targeting capabilities. A 360 deg roll maneuver combines extremal control and modified explicit guidance in which “explicit” means the acceleration commands are functions of time. The roll maneuver accurately reaches the desired position and velocity vectors through the proposed integration. Satisfying the first-order necessary optimality conditions demonstrates that the roll maneuver has extremal trajectories. To the best of the authors’ knowledge, this is the first time analyzing and testing the Weierstrass condition and the first- and second-order conditions of optimality for UAVs. Second-order conditions show that the 360 deg roll maneuver with explicit rotational attitude guidance does not have an optimal trajectory but yields an extremal trajectory.

References

1.
Munishkin
,
A. A.
,
Milutinović
,
D.
, and
Casbeer
,
D. W.
,
2016
, “
Stochastic Optimal Control Navigation With the Avoidance of Unsafe Configurations
,”
The 2016 International Conference on Unmanned Aircraft Systems
,
Arlington, VA
,
June 7–10
, IEEE, pp.
211
218
.
2.
Beul
,
M.
, and
Behnke
,
S.
,
2016
, “
Analytical Time-Optimal Trajectory Generation and Control for Multirotors
,”
The 2016 International Conference on Unmanned Aircraft Systems
,
Arlington, VA
,
June 7–10
, IEEE, pp.
87
96
.
3.
Blouin
,
C.
,
Lanteigne
,
E.
, and
Gueaieb
,
W.
,
2017
, “
Optimal Control for the Trajectory Planning of Micro Airships
,”
The 2017 International Conference on Unmanned Aircraft Systems
,
Miami, FL
,
June 13–16
, IEEE, pp.
885
892
.
4.
Garcia
,
G. A.
,
Kashmiri
,
S.
, and
Shukla
,
D.
,
2017
, “
Nonlinear Control Based on h-Infinity Theory for Autonomous Aerial Vehicle
,”
The 2017 International Conference on Unmanned Aircraft Systems
,
Miami, FL
,
June 13–16
, IEEE, pp.
336
345
.
5.
Ohlmeyer
,
E. J.
, and
Phillips
,
C. A.
,
2006
, “
Generalized Vector Explicit Guidance
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
261
268
.
6.
Kuantama
,
E.
,
Vesselenyi
,
T.
,
Dzitac
,
S.
, and
Tarca
,
R.
,
2017
, “
PID and Fuzzy-PID Control Model for Quadcopter Attitude With Disturbance Parameter
,”
Int. J. Comput. Commun. Control
,
12
(
4
), pp.
519
532
.
7.
Lee
,
S.
,
Lee
,
J.
,
Lee
,
S.
,
Choi
,
H.
,
Kim
,
Y.
,
Kim
,
S.
, and
Suk
,
J.
,
2018
, “
Sliding Mode Guidance and Control for UAV Carrier Landing
,”
IEEE Trans. Aerosp. Electron. Syst.
,
55
(
2
), pp.
951
966
.
8.
Park
,
S.
,
Deyst
,
J.
, and
How
,
J.
,
2004
, “
A New Nonlinear Guidance Logic for Trajectory Tracking
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Providence, RI
,
Aug. 16–19
, p.
4900
.
9.
Azimov
,
D.
, and
Allen
,
J.
,
2018
, “
Analytical Model and Control Solutions for Unmanned Aerial Vehicle Maneuvers in a Vertical Plane
,”
J. Intell. Rob. Syst.
,
91
(
3–4
), pp.
725
733
.
10.
Azimov
,
D.
, and
Kawamura
,
E.
,
2018
, “
Real-Time Guidance, Navigation and Control Framework for Fixed-Wing Aircraft Maneuvers in a Vertical Plane
,”
2018 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Dallas, TX
,
June 12–15
, IEEE, pp.
621
630
.
11.
Cherry
,
G.
,
1964
, “
A General, Explicit, Optimizing Guidance Law for Rocket-Propelled Spaceflight
,”
Astrodynamics Guidance and Control Conference
,
Los Angeles, CA
,
Aug. 24–26
, p.
638
.
12.
Kawamura
,
E.
, and
Azimov
,
D.
,
2019
, “
Integrated Optimal Control and Explicit Guidance for Quadcopters
,”
2019 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Atlanta, GA
,
June 11–14
, IEEE, pp.
513
522
.
13.
Kawamura
,
E.
, and
Azimov
,
D.
,
2020
, “
Integrated Extremal Control and Explicit Guidance for Quadcopters
,”
J. Intell. Rob. Syst.
,
100
(
3
), pp.
1583
1613
.
14.
Kelley
,
H. J.
,
Kopp
,
R. E.
, and
Moyer
,
H.
,
1967
, “Singular Extremals,”
Topics in Optimization
,
G.
Leitmann
, ed.,
Academic Press, Inc.
,
London
, pp.
63
101
.
15.
Kawamura
,
E.
, and
Azimov
,
D.
,
2019
, “
Integrated Targeting, Guidance, Navigation, and Control for Unmanned Aerial Vehicles
,”
29th AAS/AIAA Space Flight Mechanics Meeting
,
Ka’anapali, HI
,
Jan. 13–17
.
16.
Gibiansky
,
A.
,
2012
, “
Quadcopter Dynamics, Simulation, and Control
,”
Github
, pp.
1
24
. https://github.com/gibiansky/experiments/blob/master/quadcopter/project.pdf
17.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2018
,
Analytical Mechanics of Space Systems
, 4th ed.,
AIAA
,
Reston, VA
.
18.
Luukkonen
,
T.
,
2011
, “
Modelling and Control of Quadcopter
,” Independent Research Project in Applied Mathematics, Espoo, 22, p.
22
.
19.
Palm
,
W. J.
,
2010
,
System Dynamics
, Vol. 2,
McGraw-Hill
,
New York
.
20.
Çengel
,
Y. C.
, and
Cimbala
,
J.
,
2014
,
Fluid Mechanics: Fundamentals and Applications
, 3th ed.,
McGraw-Hill Higher Education
,
Boston, MA
.
21.
Federal Aviation Administration Press Office
,
2020
, “
Fact Sheet—Small Unmanned Aircraft Regulations (Part 107)
,”
Federal Aviation Administration
. https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107?newsId=22615
22.
Azimov
,
D. M.
,
2017
,
Analytical Solutions for Extremal Space Trajectories
,
Butterworth-Heinemann
,
Cambridge, MA
, pp.
1
317
.
23.
Lawden
,
D. F.
,
1963
,
Optimal Trajectories for Space Navigation
, Vol. 3,
Butterworths
,
London
, p.
126
.
24.
Bryson
,
A. E.
, and
Ho
,
Y.-C.
,
2018
,
Applied Optimal Control: Optimization, Estimation, and Control
,
Routledge
,
Boca Raton, FL
.
25.
Klumpp
,
A.
,
1974
, “
Apollo Lunar-Descent Guidance
,”
Automatica
,
10
(
2
), pp.
133
146
.
26.
Wilhelm
,
J. P.
, and
Clem
,
G.
,
2019
, “
Vector Field UAV Guidance for Path Following and Obstacle Avoidance With Minimal Deviation
,”
J. Guid. Control Dyn.
,
42
(
8
), pp.
1848
1856
.
27.
Gautam
,
A.
,
Sujit
,
P.
, and
Saripalli
,
S.
,
2017
, “
Autonomous Quadrotor Landing Using Vision and Pursuit Guidance
,”
IFACPapersOnLine
,
50
(
1
), pp.
10501
10506
.
28.
Viswanathan
,
S. P.
,
Sanyal
,
A. K.
, and
Izadi
,
M.
,
2017
, “
Integrated Guidance and Nonlinear Feedback Control of Underactuated Unmanned Aerial Vehicles in SE(3)
,”
AIAA Guidance, Navigation, and Control Conference
,
Grapevine, TX
,
Jan. 9–13
, p.
1044
.
29.
Clifton
,
D.
,
2015
, “
PID Tuning. Github—Martinbudden/Betaflight/Docs/PID Tuning.md
,”
Github
. https://github.com/martinbudden/betaflight/blob/master/docs/PID
30.
Verner
,
J. H.
,
2010
, “
Numerically Optimal Runge–Kutta Pairs With Interpolants
,”
Numer. Algorithms
,
53
(
2
), pp.
383
396
.
31.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2014
,
Fundamentals of Engineering Thermodynamics
, 8th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.