Skip to Main Content
Skip Nav Destination
ASTM Manuals
Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing
By
George E. Totten
George E. Totten
Editor
1
G. E. Totten & Associates, LLC
,
Seattle, WA
US
Search for other works by this author on:
Rajesh J. Shah
Rajesh J. Shah
Section Editor
2
Koehler Instrument Company
,
Holtsville, NY
US
Search for other works by this author on:
David R. Forester
David R. Forester
Section Editor
3
Fuel Quality Services, Inc.
,
Flowery Branch, GA
US
Search for other works by this author on:
ISBN:
978-0-8031-7089-6
No. of Pages:
1806
Publisher:
ASTM International
Publication date:
2019

This chapter focuses on fundamental principles involved in lubrication and wear. Because this chapter addresses basic design principles of tribological processes in lubrication and wear testing, numerous equations are utilized. The applicability of these relationships to tribological testing is also discussed. The structure of this chapter is to first address basic principles involved in friction. After friction, wear, and principles of fluid lubrication are discussed. The last section of this chapter provides an overview of additive chemistry in the formulation of lubricants.

1.
Ludema
,
K. C.
,
Friction, Wear, Lubrication: A Textbook in Tribology
,
CRC Press
,
Boca Raton, FL
,
1996
.
2.
Czichos
,
H.
,
Klaffke
,
D.
,
Santner
,
E.
, and
Woydt
,
M.
, “
Advances in Tribology: The Materials Point of View
,”
Wear
, Vol.
190
, No.
2
,
1995
, pp. 155–161.
3.
Tabor
,
D.
, “
Friction—The Present State of Our Understanding
,”
J. Lubr. Technol.
, Vol.
103
, No.
2
,
1981
, pp. 169–179.
4.
Booser
,
E. R.
,
Handbook of Lubrication: Theory and Practice of Tribology
,
CRC Press
,
Boca Raton, FL
,
1988
.
5.
Stolarski
,
T.
,
Tribology in Machine Design
,
Butterworth-Heinemann
,
London
,
1990
.
6.
Park
,
K.-B.
and
Ludema
,
K.
, “
Evaluation of the Plasticity Index as a Scuffing Criterion
,”
Wear
, Vol.
175
,
1994
, pp. 123–131.
7.
Kuisma
,
R.
, “
Physical Characterization of Plastic Surfaces in Wearing and Cleanability Research
,” Dissertation,
University of Helsinki
,
2006
.
8.
Zaretsky
,
E. V.
, “
STLE Life Factors for Rolling Bearings
,”
STLE Special Publication
, SP,
Society of Tribologists and Lubrication Engineers
,
Park Ridge, IL
,
1992
.
9.
Cann
,
P.
,
Ioannides
,
E.
,
Jacobson
,
B.
, and
Lubrecht
,
A.
, “
The Lambda Ratio—A Critical Re-Examination
,”
Wear
, Vol.
175
, Nos.
1–2
,
1994
, pp. 177–188.
10.
Moyer
,
C. A.
, “
Comparing Surface Failure Modes in Bearings and Gears
,”
Konstruktion-Zeitschrift fur Konstruktion Entwicklung im Maschinen Apparate Geratebau
, Vol.
48
, No.
3
,
1996
, pp. 47–53.
11.
Townsend
,
D.
and
Shimski
,
J.
, “
EHL Film Thickness, Additives and Gear Surface Fatigue
,”
Gear Technol.
, Vol.
12
, No.
3
,
1995
, pp. 26–31.
12.
Poon
,
C. Y.
and
Bhushan
,
B.
, “
Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler
,”
Wear
, Vol.
190
, No.
1
,
1995
, pp. 76–88.
13.
Hamrock
,
B. J.
, “
Fundamentals of Lubrication
,” presented at
Union Carbide Corporation
,
Tarrytown, NY
,
1990
.
14.
Williamson
,
J.
, “
The Shape of Surfaces
,”
CRC Handbook of Lubrication
, Vol.
2
,
CRC Press
,
Boca Rotan, FL
,
1984
, pp. 3–16.
15.
Matveevsky
,
R.
, “
Chemical Modification of Friction Surfaces in Boundary Lubrication
,”
ASLE Trans.
, Vol.
25
, No.
4
,
1982
, pp. 483–438.
16.
Okabe
,
H.
,
Masuko
,
M.
, and
Oshino
H.
, “
Effects of Viscosity and Contact Geometry on Tribochemical Surface Reaction
,”
ASLE Trans.
, Vol.
25
, No.
1
,
1982
, pp. 39–43.
17.
De Gee
,
A.
,
Lossie
,
C.
, and
Mens
,
J.
, “
Characterization of Five High-Performance Lubricants in Terms of IRG Transition Diagram Data
,”
Tribology-Friction, Lubrication and Wear Fifty Years On
, Vol.
1
,
Institution of Mechanical Engineers
,
London
,
1987
, pp. 427–436.
18.
Wedeven
,
L. D.
, “
What Is EHD?
Lubr. Engineer.
, Vol.
31
, No.
6
,
1975
, pp. 291–296.
19.
Lauer
,
J. L.
and
Dwyer
,
S. R.
, “
Tribochemical Lubrication of Ceramics by Carbonaceous Vapors
,”
Tribol. Trans.
, Vol.
34
, No.
4
,
1991
, pp. 521–528.
20.
Kempinski
,
R.
,
Kardaze
,
K.
,
Wilkanowicz
,
L.
, and
Konopku
,
M.
, “
Tribopolymerization—Type Additives for Lubricants, Part I: C12–C18 Alkyl Methacrylates
,”
Tribologia
, Vol.
26
, pp. 277–298.
21.
Novotony
,
V.
,
Pan
,
X.
, and
Bhatia
,
C.
, “
Tribochemistry at Lubricated Interface
,”
J. Vac. Sci. Technol.
, Vol.
A12
, No.
5
,
1994
, p. 5.
22.
Kajdas
,
C.
,
Lafleche
,
P.
,
Furey
,
M.
,
Hellgeth
,
J.
, and
Ward
,
T.
, “
A Study of Tribopolymerisation under Fretting Contact Conditions
,”
Lubr. Sci.
, Vol.
6
, No.
1
,
1993
, pp. 51–89.
23.
Rabinowicz
,
E.
,
Friction and Wear of Materials
,
John Wiley
,
New York
,
1965
.
24.
Rigney
,
D.
, “
The Roles of Hardness in the Sliding Behavior of Materials
,”
Wear
, Vol.
175
, Nos.
1–2
,
1994
, pp. 63–69.
25.
Booser
,
E. R.
,
CRC Handbook of Lubrication. Theory and Practice of Tribology
, Vol.
II
,
Theory and Design
,
CRC Press
,
Boca Raton, FL
,
1984
.
26.
Dorinson
,
A.
and
Ludema
,
K. C.
,
Mechanics and Chemistry in Lubrication
,
Elsevier
,
Amsterdam
,
1985
.
27.
Kato
,
K.
, “
Wear Mechanisms
,”
New Directions in Tribology
,
Hutchings
I.
 I
, Ed., World Tribology Congress,
London
,
1997
, pp. 39–56.
28.
Klaus
,
E.
and
Fenske
,
M.
, “
The Use of ASTM Slope for Predicting Viscosities
,”
ASTM Bull.
215
,
1956
, pp. 87–94.
29.
Rabinowicz
,
E.
,
Friction and Wear of Materials
,
John Wiley
,
New York
,
1965
, p. 154.
30.
Totten
,
G. G.
,
Handbook of Hydraulic Fluid Power Technology
,
Marcel-Dekker
,
New York
,
2000
.
31.
Meng
,
H.
and
Ludema
,
K.
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
, Vols.
181–183
,
Pt. 2
,
1995
, pp. 443–457.
32.
Moyer
,
C. A.
, “
Comparing Surface Failure Modes in Bearings and Gears: Appearances versus Mechanisms
,” Technical Paper 91 FTM 6,
American Gear Manufacturers Association
,
Alexandria, VA
,
1991
.
33.
Godfrey
,
D.
, “
Gear Wear Caused by Contaminated Oils
,”
Gear Technol. (USA)
, Vol.
13
, No.
5
,
1996
, pp. 45–49.
34.
Giltrow
,
J.
, “
A Relationship between Abrasive Wear and the Cohesive Energy of Materials
,”
Wear
, Vol.
15
, No.
1
,
1970
, pp. 71–78.
35.
Fitch
,
E. C., ITH
, and
Xuan
,
J. L.
, “
Abrasion
,”
Wear, BFPR J.
Vol.
21
,
1988
, pp. 9–29.
36.
Tomsic
,
J.
,
Dictionary of Materials and Testing
,
Society of Automotive Engineers
,
Warrendale, PA
,
2000
, p. 450.
37.
Shi
,
J.
,
Gao
,
M.
,
Wang
,
T.
,
Wen
,
X.
, and
Shi
,
W.
, “
Corrosion Wear Behaviour of Ion-Implanted Steel
,”
Wear
, Vol.
176
, No.
2
,
1994
, pp. 145–149.
38.
Meyer
,
U.
,
Brosnan
,
C.
,
Bremhorst
,
K.
,
Tomlins
,
R.
, and
Atrens
,
A.
, “
A New Impinging Jet Test Rig Used to Identify the Important Parameters in Service Erosion-Corrosion in Bayer Liquor and to Study the Damage Morphology
,”
Wear
, Vol.
176
, No.
2
,
1994
, pp. 163–171.
39.
Archard
,
J.
and
Hirst
,
W.
, “
The Wear of Metals under Unlubricated Conditions
,”
Proc. Royal Soc. Lond. A
, Vol.
236
, No.
1206
,
1956
, pp. 397–410.
40.
Quinn
,
T.
, “
Oxidational Wear Modelling: Part II. The General Theory of Oxidational Wear
,”
Wear
,
1994
, Vol.
175
, Nos.
1–2
, pp. 199–208.
41.
Sachs
,
N. W.
, “
Metal Fatigue
,”
Lubr. Engineer.
, Vol.
47
, No.
12
,
1991
, pp. 977–981.
42.
Scott
,
D.
, “
Rolling Contact Fatigue
,”
Treat. Mater. Sci. Technol.
, Vol.
13
,
2013
, pp. 321–361.
43.
Johnson
,
K.
, “
The Strength of Surfaces in Rolling Contact
,”
Proc. Instit. Mechan. Engineer. C
, Vol.
203
, No.
3
,
1989
, pp. 151–163.
44.
Waterhouse
,
R.
,
McColl
,
I.
,
Harris
,
S.
, and
Tsujikawa
,
M.
, “
Fretting Wear of a High-Strength Heavily Work-Hardened Eutectoid Steel
,”
Wear
, Vol.
175
, Nos.
1–2
,
1994
, pp. 51–57.
45.
Committee AIH
,
ASM Handbook: Friction, Lubrication, and Wear Technology
,
ASM International
,
Novelty, OH
,
1992
.
46.
Neale
,
M.
and
Gee
,
M.
,
A Guide to Wear Problems and Testing for Industry
,
William Andrew
,
Norwich, NY
,
2001
.
47.
Baker
,
R.
and
Olver
,
A.
, “
Direct Observations of Fretting Wear of Steel
,”
Wear
, Vols.
203–207
,
1997
, pp. 425–433.
48.
Zhou
,
Z.
and
Vincent
,
L.
, “
Cracking Induced by Fretting of Aluminium Alloys
,”
J. Tribol.
, Vol.
119
, No.
1
,
1997
, pp. 36–42.
49.
Kalin
,
M.
and
Vižintin
,
J.
, “
A Tentative Explanation for the Tribochemical Effects in Fretting Wear
,”
Wear
, Vol.
250
, Nos.
1–12
,
2001
, pp. 681–689.
50.
Kalin
,
M.
and
Vižintin
,
J.
, “
High Temperature Phase Transformations under Fretting Conditions
,”
Wear
, Vol.
249
, Nos.
3–4
,
2001
, pp. 172–181.
51.
Kalin
,
M.
,
Vižintin
,
J.
,
Novak
,
S.
, and
Dražič
,
G.
, “
Wear Mechanisms in Oil-Lubricated and Dry Fretting of Silicon Nitride against Bearing Steel Contacts
,”
Wear
, Vol.
210
, Nos.
1–2
,
1997
, pp. 27–38.
52.
Borsoff
,
V.
, “
On the Mechanism of Gear Lubrication
,”
J. Basic Engineer.
, Vol.
80
,
1959
, pp. 79–93.
53.
Enthoven
,
J.
and
Spikes
,
H.
, “
Infrared and Visual Study of the Mechanisms of Scuffing
,”
Tribol. Trans.
, Vol.
39
, No.
2
,
1996
, pp. 441–447.
54.
Cameron
,
A.
, “
The Role of Surface Chemistry in Lubrication and Scuffing
,”
ASLE Trans.
, Vol.
23
, No.
4
,
1980
, pp. 388–392.
55.
Spikes
,
H.
and
Cameron
,
A.
, “
Scuffing as a Desorption Process—An Explanation of the Borsoff Effect
,”
ASLE Trans.
, Vol.
17
, No.
2
,
1974
, pp. 92–96.
56.
Grew
,
W.
and
Cameron
,
A.
, “
Thermodynamics of Boundary Lubrication and Scuffing
,”
Proc. Royal Soc. Lond. A
, Vol.
327
, No.
1568
,
1972
, pp. 47–59.
57.
Suh
,
N.
,
Jahanmir
,
S.
,
Abrahamson
,
E.
, and
Turner
,
A.
, “
Further Investigation of the Delamination Theory of Wear
,”
J. Lubr. Technol.
, Vol.
96
, No.
4
,
1974
, pp. 631–637.
58.
Jahanmir
,
S.
,
Suh
,
N.
, and
Abrahamson
,
E.
, “
The Delamination Theory of Wear and the Wear of a Composite Surface
,”
Wear
, Vol.
32
, No.
1
,
1975
, pp. 33–49.
59.
Lim
,
S.
and
Ashby
,
M.
, “
Overview No. 55 Wear-Mechanism Maps
,”
Acta Metall.
, Vol.
35
, No.
1
,
1987
, pp. 1–24.
60.
Cho
,
U.
and
Tichy
,
J. A.
, “
A Phenomenological Approach to Wear Debris Analysis
,” DTIC Document,
Defence Technical Information Center
,
Fort Belvoir, VA
,
1996
.
61.
Hunt
,
T. M.
,
Handbook of Wear Debris Analysis and Particle Detection in Liquids
,
Chapman & Hall
,
London
,
1993
.
62.
Singh
,
T.
and
Verma
,
V.
, “
EP Activity Evaluation of Tris (N-Arylthiosemicarbazido) Molybdenum (III) on Steel Balls in a Four-Ball Test
,”
Wear
, Vol.
146
, No.
2
,
1991
, pp. 313–323.
63.
Hsu
,
S.
,
Lim
,
D.
,
Wang
,
Y.
, and
Munro
,
R.
, “
Ceramics Wear Maps: Concept and Method Development
,”
Lubr. Engineer.
, Vol.
47
, No.
1
,
1991
, pp. 49–54.
64.
Beerbower
,
A.
, “
Boundary Lubrication
,” DTIC Document,
Defence Technical Information Center
,
Fort Belvoir, VA
,
1972
.
65.
Leng
,
J.
and
Davies
,
J.
, “
Examination of Wear Debris Produced Using a Four-Ball Machine
,”
Tribol. Intl.
, Vol.
22
, No.
2
,
1989
, pp. 137–142.
66.
Bartz
,
W.
, “
Tribology, Lubricants and Lubrication Engineering—A Review
,”
Wear
, Vol.
49
, No.
1
,
1978
, pp. 1–18.
67.
Archard
,
J.
, “
The Temperature of Rubbing Surfaces
,”
Wear
, Vol.
2
, No.
6
,
1959
, pp. 438–455.
68.
Sethuramiah
,
A.
,
Okabe
,
H.
, and
Sakurai
,
T.
, “
Critical Temperatures in EP Lubrication
,”
Wear
, Vol.
26
, No.
2
,
1973
, pp. 187–206.
69.
Ku
,
P.
,
Staph
,
H.
, and
Carper
,
H.
, “
On the Critical Contact Temperature of Lubricated Sliding-Rolling Disks
,”
ASLE Trans.
, Vol.
21
, No.
2
,
1978
, pp. 161–180.
70.
Huang
,
Y.
,
Cheng
,
G.
, and
Dong
,
J.
, “
Studies on the Interrelationships between the Character of Metals and Antiwear Additives
,”
Lubr. Sci.
, Vol.
2
, No.
3
,
1990
, pp. 253–266.
71.
Carslaw
,
H. S.
and
Jaeger
,
J. C.
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford
,
1959
.
72.
Bhattacharya
,
A.
,
Singh
,
T.
,
Verma
,
V.
, and
Prasad
,
N.
, “
1, 3, 4-Thiadiazoles as Potential EP Additives—A Tribological Evaluation Using a Four-Ball Test
,”
Tribol. Intl.
, Vol.
28
, No.
3
,
1995
, pp. 189–194.
73.
Cowan
,
R. S.
and
Winer
,
W. O.
, “
Thermomechanical Wear Modelling
,”
TriboTest
., Vol.
1
, No.
2
,
1994
, pp. 111–123.
74.
Kuhlmann-Wilsdorf
,
D.
, “
Demystifying Flash Temperatures I. Analytical Expressions Based on a Simple Model
,”
Mater. Sci. Engineer.
, Vol.
93
,
1987
, pp. 107–118.
75.
Kuhlmann-Wilsdorf
,
D.
, “
Demystifying Flash Temperatures II. First-Order Approximation for Plastic Contact Spots
,”
Mater. Sci. Engineer.
, Vol.
93
,
1987
, pp. 119–133.
76.
Lim
,
S.
and
Ashby
,
M.
, “
The Temperature of Sliding Surfaces: A Literature Review and Theoretical Development
,”
University of Cambridge, Department of Engineering
,
Cambridge, UK
,
1985
.
77.
Hokkirigawa
,
K.
, “
Recent Research on Wear Maps
,”
Japan. J. Tribol.
, Vol.
37
, No.
10
,
1992
, p. 1223.
78.
Norose
,
S.
, “
Developments in Wear Theory
,”
Japan. J. Tribol.
, Vol.
39
, No.
3
,
1994
, pp. 281–290.
79.
De Gee
,
A.
,
Begelinger
,
A.
, and
Salomon
,
G.
, “
Lubricated Wear of Steel Point Contacts—Application of the Transition Diagram
,” Wear of Materials
1983
, pp. 534–540.
80.
Jahanmir
,
S.
and
Beltzer
,
M.
, “
Effect of Additive Molecular Structure on Friction Coefficient and Adsorption
,”
J. Tribol.
, Vol.
108
, No.
1
,
1986
, pp. 109–116.
81.
Fowkes
,
F. M.
, “
Orientation Potentials of Monolayers Adsorbed at the Metal-Oil Interface 1
,”
J. Phys. Chem.
, Vol.
64
, No.
6
,
1960
, pp. 726–728.
82.
Yamins
,
H.
and
Zisman
,
W.
, “
A New Method of Studying the Electrical Properties of Monomolecular Films on Liquids
,”
J. Phys. Chem.
, Vol.
1
, No.
656
,
1933
, pp. 656–661.
83.
Bewig
,
K.
and
Zisman
,
W.
, “
Low Energy Reference Electrodes for Investigating Adsorption by Contact Potential Measurements
,”
Advances in Chemistry
, Vol.
33
,
U.S. Naval Research Laboratory
,
Washington, DC
,
1961
, pp. 100–113.
84.
Frumkin
,
A.
, “
Über die Beeinflussung der Adsorption von Neutralmolekülen durch ein Elektrisches Feld
,”
Zeitschrift für Physik
, Vol.
35
,
1926
, pp. 792–802.
85.
Askwith
,
T.
,
Cameron
,
A.
, and
Crouch
,
R.
, “
Chain Length of Additives in Relation to Lubricants in Thin Film and Boundary Lubrication
,”
Proc. Royal Soc. Lond. A
, Vol.
291
, No.
1427
,
1966
, pp. 500–519.
86.
Jahanmir
,
S.
, “
Chain Length Effects in Boundary Lubrication
,”
Wear
, Vol.
102
, No.
4
,
1985
, pp. 331–349.
87.
Gu
,
J.
,
Barber
,
G.
,
Tung
,
S.
, and
Gu
,
R.-J.
, “
Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts
,”
Wear
, Vol.
225
,
1999
, pp. 273–284.
88.
Lim
,
S.
, “
Recent Developments in Wear-Mechanism Maps
,”
Tribol. Intl.
, Vol.
31
, Nos.
1–3
,
1998
, pp. 87–97.
89.
Stribeck
,
R.
, “
Characteristics of Plain and Roller Bearings
,”
Zeit VDI
, Vol.
46
,
1902
.
90.
McKee
,
S.
and
McKee
,
T.
, “
Friction of Journal Bearings as Influenced by Clearance and Length
,”
Trans ASME
, Vol.
51
,
1929
, p. 161.
91.
Möller
,
U. J.
and
Boor
,
U.
,
Lubricants in Operation
,
John Wiley
,
New York
,
1996
.
92.
Goodfellow Catalog
, http://www.goodfellowusa.com/
93.
Herz
,
H.
,
Uber die Beruhrung Fester Elastische Korper and uber die Harte
,
Verhandlungen des Vereins zur Beforderung des Gewerbefleisses
,
Leipzig
,
1882
.
94.
Cameron
,
A.
and
Gohar
,
R.
, “
Theoretical and Experimental Studies of the Oil Film in Lubricated Point Contact
,”
Proc. Royal Soc. Lond. A
, Vol.
291
, No.
1427
,
1966
, pp. 520–536.
95.
Glasstone
,
S.
, Textbook of Physical Chemistry,
1951
.
96.
Hartung
,
W.
,
Drobek
,
T.
,
Lee
,
S.
,
Zürcher
,
S.
, and
Spencer
,
N. D.
, “
The Influence of Anchoring-Group Structure on the Lubricating Properties of Brush-Forming Graft Copolymers in an Aqueous Medium
,”
Tribol. Lett.
, Vol.
31
, No.
2
,
2008
, pp. 119–128.
97.
Hartl
,
M.
,
Krupka
,
I.
,
Poliscuk
,
R.
,
Liska
,
M.
,
Molimard
,
J.
,
Querry
,
M.
, and
Vergne
,
P.
, “
Thin Film Colorimetric Interferometry
,”
Tribol. Trans.
, Vol.
44
, No.
2
,
2001
, pp. 270–276.
98.
Dowson
,
D.
, “
Elastohydrodynamics
,”
Proceedings of the Institution of Mechanical Engineers
,
Conference Proceedings, Paper 10
,
SAGE Publications
,
1967
, pp. 151–167.
99.
Wedeven
,
L.
,
Totten
,
G.
, and
Bishop
,
R.
, “
Performance Map and Film Thickness Characterization of Hydraulic Fluids
,” SAE Technical Paper,
Society of Automotive Engineers
,
Warrendale, PA
,
1995
.
100.
Bair
,
S.
and
Khonsari
,
M.
, “
An EHD Inlet Zone Analysis Incorporating the Second Newtonian
,”
J. Tribol.
, Vol.
118
, No.
2
,
1996
, pp. 341–343.
101.
Hirst
,
W.
and
Moore
,
A.
, “
Non-Newtonian Behaviour in Elastohydrodynamic Lubrication
,”
Proc. Royal Soc. Lond. A
, Vol.
337
, No.
1608
,
1974
, pp. 101–121.
102.
Chang
,
L.
and
Zhao
,
W.
, “
Fundamental Differences between Newtonian and Non-Newtonian Micro-EHL Results
,”
J. Tribol.
, Vol.
117
, No.
1
,
1995
, pp. 29–35.
103.
Aderin
,
M.
,
Johnston
,
G. J.
,
Spikes
,
H. A.
, and
Caporiccio
,
G.
, “
The Elastohydrodynamic Properties of Some Advanced Non Hydrocarbon-Based Lubricants
,”
Lubr. Engineer.
, Vol.
48
, No.
8
,
1992
, pp. 633–638.
104.
Patir
,
N.
and
Cheng
,
H.
, “
Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts
,” Proc. Inst. Mech. Engl.,
1970
, pp. 15–21.
105.
Andersson
,
S.
and
Salas-Russo
,
E.
, “
The Influence of Surface Roughness and Oil Viscosity on the Transition in Mixed Lubricated Sliding Steel Contacts
,”
Wear
, Vol.
174
, Nos.
1–2
,
1994
, pp. 71–79.
106.
Cheng
,
H. S.
,
Lubrication Regimes
,
ASM International
,
Materials Park, OH
,
1992
, pp. 89–97.
107.
Barus
,
C.
, “
Note on the Dependence of Viscosity on Pressure and Temperature
,”
Proceedings of the American Academy of Arts and Sciences
, Vol.
27
,
1891
, pp. 13–18.
108.
Jones
,
W. R.
, Jr
,
Johnson
,
R. L.
,
Winer
,
W. O.
, and
Sanborn
,
D. M.
, “
Pressure-Viscosity Measurements for Several Lubricants to 5.5 × 108 Newtons per Square Meter (8 × 104 psi) and 149°C (300°F)
,”
ASLE Trans.
, Vol.
18
, No.
4
,
1975
, pp. 249–262.
109.
Roelands
,
C. J. A.
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Delft University of Technology
,
Delft, Netherlands
,
1966
.
110.
Fresco
,
G.
,
Klaus
,
E.
, and
Tewksbury
,
E.
, “
Measurement and Prediction of Viscosity-Pressure Characteristics of Liquids
,”
J. Lubr. Technol.
, Vol.
91
, No.
3
,
1969
, pp. 451–457.
111.
Appeldoorn
,
J.
, “
A Simplified Viscosity-Pressure-Temperature Equation
,” SAE Technical Paper,
Society of Automotive Engineers
,
Warrendale, PA
,
1963
.
112.
Kouzel
,
B.
, “
Hydrocarbon Processing and Pet
,”
Refiner
., Vol.
443
,
1965
, p. 120.
113.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
J. Basic Eng
., Vol.
85
, No.
4
,
1963
, pp. 601–607.
114.
Fresco
,
G. P.
, “
Measurement and Prediction of Viscosity-Pressure Characteristics of Liquids
,” M.S. thesis,
The Pennsylvania State University
, University Park, PA,
1962
.
115.
Kim
,
H. W.
, “
Viscosity-Pressure Studies of Polymer Solutions
,” Ph.D. thesis,
The Pennsylvania State University
, University Park, Pennsylvania.
1970
.
116.
So
,
B. Y. C.
and
Klaus
,
E.
, “
Viscosity-Pressure Correlation of Liquids
,”
ASLE Trans.
, Vol.
23
, No.
4
,
1980
, pp. 409–421.
117.
Cameron
,
A.
, “
Pressure Viscosity Characteristics of Lubricating Oils
,”
J. Inst. Petrol.
, Vol.
48
,
1962
, pp. 147–155.
118.
Worster
,
R. C.
, “
Discussion to Paper by A. E. Bringham
,”
Proc. Inst. Mech. Eng.
, Vol.
165
,
1951
, p. 269.
119.
Johnston
,
W.
, “
A Method to Calculate the Pressure-Viscosity Coefficient from Bulk Properties of Lubricants
,”
ASLE Trans.
, Vol.
24
, No.
2
,
1981
, pp. 232–238.
120.
Shibada
,
J., N. R.
, “
Basic Characteristics of Lubricant Oils
,”
High Pressure Viscosity of Lubricants
, Vol.
39
, No.
2
,
1997
, pp. 46–56.
121.
Bair
,
S.
, “
The Pressure-Viscosity Coefficient of a Perfluorinated Polyether over a Wide Temperature Range
,”
J. Tribol.
, Vol.
123
, No.
1
,
2001
, pp. 50–53.
122.
Cameron
,
A.
,
The Principles of Lubrication
,
John Wiley
,
New York
,
1966
.
123.
Kajdas
,
C.
and
Ehningen
,
G.
,
Engine Oils and Automotive Lubrication
,
Ehningen, Germany
.
124.
Klaus
,
E.
,
Tewksbury
,
E.
, and
Bose
,
A.
, “
Some Chemical Reactions in Boundary Lubrication
,”
Proceedings of the JSLE-ASLE International Lubrication Conference
,
Elsevier, New York
,
1976
, 39-481976.
125.
Nakayama
,
K.
, “
Tribophysical Phenomena and Chemical Reactions
,”
Toraiborozsuto
, Vol.
42
,
1997
, pp. 712–717.
126.
Yanagisawa
,
M.
, “
Molecular Structure of Thin Organic Films
,”
Japan. J. Tribol.
, Vol.
39
,
1994
, pp. 551–560.
127.
Schilling
,
G.
and
Bright
,
G.
, “
Fuel and Lubricant Additives. 2. Lubricant Additives
,”
Lubrication
, Vol.
63
, No.
2
,
1977
, pp. 13–24.
128.
Hironaka
,
S.
, “
Working Mechanisms of Additives in Lubricating Oils
,”
Sosei to Kako
, Vol.
36
,
1995
, pp. 579–585.
129.
Rudnick
,
L. R.
,
Lubricant Additives: Chemistry and Applications
,
CRC Press
,
Boca Raton, FL
,
2009
.
130.
Bernett
,
M. K.
,
Kinzig
,
B. J.
,
Murday
,
J. S.
, and
Ravner
,
H.
, “
Surface Analysis of Bearing Steels after Solvent Treatments
,”
ASLE Trans.
, Vol.
24
, No.
1
,
1981
, pp. 98–106.
131.
Bernett
,
M. K.
and
Ravner
,
H.
, “
Surface Analysis of Bearing Steels after Solvent Treatments. II: Lubricant-Coated Bearing Surfaces
,”
ASLE Trans.
, Vol.
25
, No.
1
,
1982
, pp. 55–63.
132.
Tessmann
,
J. Ca. R. K.
, “
Additive Packages for Hydraulic Fluids
,”
BFPR J
., Vol.
12
, No.
2
,
1979
, pp. 111–117.
133.
Anon.
, “
Fundamentals of Wear
,”
Lubrication
, Vol.
42
,
1956
, pp. 149–160.
134.
Crawford
,
J.
,
Psaila
,
A.
, and
Orszulik
,
S.
, “
Miscellaneous Additives and Vegetable Oils
,”
Chemistry and Technology of Lubricants
,
Springer
,
The Netherlands
,
1997
, pp. 181–202.
135.
Makowska
,
M. G.
and
Molenda
,
J.
, “
Interfacial Interactions in Tribological Contact
,”
Tribologia
., Vol.
3
,
1998
, pp. 254–264.
136.
Hu
,
Z.-S.
,
Hsu
,
S. M.
, and
Wang
,
P. S.
, “
Tribochemical and Thermochemical Reactions of Stearic Acid on Copper Surfaces Studied by Infrared Microspectroscopy
,”
Tribol. Trans.
, Vol.
35
, No.
1
,
1992
, pp. 189–193.
137.
Hardy
,
W.
and
Doubleday
,
I.
, “
Boundary Lubrication. The Paraffin Series
,”
Proceedings of the Royal Society of London Series A
, Vol.
100
, No.
707
,
1922
, pp. 550–574.
138.
Studt
,
P.
, “
Boundary Lubrication: Adsorption of Oil Additives on Steel and Ceramic Surfaces and Its Influence on Friction and Wear
,”
Tribol. Intl.
, Vol.
22
, No.
2
,
1989
, pp. 111–119.
139.
Forbes
,
E.
and
Reid
,
A.
, “
Liquid Phase Adsorption/Reaction Studies of Organo-Sulfur Compounds and Their Load-Carrying Mechanism
,”
ASLE Trans.
, Vol.
16
, No.
1
,
1973
, pp. 50–60.
140.
Clunie
,
A.
and
Giles
,
C.
, “
Tumbling Apparatus for Liquid-Phase Adsorption Experiments
,” Chemical & Industry,
1957
, pp. 481–482.
141.
Groszek
,
A. J.
, “
Heat of Adsorption Experiments in Lubricating Oil Research
,” Chem. Ind.,
1965
, pp. 482–489.
142.
Allum
,
K. G.
and
Forbes
,
E.
, “
Load-Carrying Properties of Organic Sulphur Compounds. 2. Influence of Chemical Structure on Anti-Wear Properties of Organic Disulphides
,”
J. Inst. Petrol.
, Vol.
53
,
1967
, p. 173.
143.
Temkin
,
M. I.
, “
Adsorption Equilibrium and the Kinetics of Processes on Nonhomogeneous Surfaces and in the Interaction between Adsorbed Molecules
,”
Zh Fiz Chim.
, Vol.
15
,
1941
, pp. 296–332.
144.
Jahanmir
,
S.
and
Beltzer
,
M.
, “
An Adsorption Model for Friction in Boundary Lubrication
,”
ASLE Trans.
, Vol.
29
, No.
3
,
1986
, pp. 423–430.
145.
Beltzer
,
M.
and
Jahanmir
,
S.
, “
Effect of Additive Structure on Friction
,”
Lubr. Sci.
, Vol.
1
, No.
1
,
1988
, pp. 3–26.
146.
Canale
,
L. C.
,
Xu
,
G.
,
Liang
,
H.
,
Liu
,
J.
, and
Totten
,
G. E.
, “
Surface Engineered Coatings and Surface Additive Interactions for Boundary Film Formation to Reduce Frictional Losses in the Automotive Industry: A Review
,” SAE Technical Paper,
Society of Automotive Engineers
,
Warrendale, PA
,
2005
.
147.
Adhvaryu
,
A.
,
Erhan
,
S.
, and
Perez
,
J.
, “
Tribological Studies of Thermally and Chemically Modified Vegetable Oils for Use as Environmentally Friendly Lubricants
,”
Wear
, Vol.
257
, Nos.
3–4
,
2004
, pp. 359–367.
148.
Sellei
,
H.
, “
Sulfurized Extreme-Pressure Lubricants and Cutting Oils, Part 1
,”
Petrol. Process.
, Vol.
4
,
1949
, pp. 1003–1008.
149.
Forbes
,
E. S.
, “
Antiwear and Extreme Pressure Additives for Lubricants
,”
Tribology
, Vol.
3
, No.
3
,
1970
, pp. 145–152.
150.
Lansdown
,
A.
, “
Extreme-Pressure and Anti-Wear Additives
,”
Chemistry and Technology of Lubricants
,
Springer
,
The Netherlands
,
1992
, pp. 269–281.
151.
Bec
,
S.
,
Tonck
,
A.
,
Georges
,
J.-M.
,
Coy
,
R.
,
Bell
,
J.
, and
Roper
,
G.
, “
Relationship between Mechanical Properties and Structures of Zinc Dithiophosphate Anti-Wear Films
,”
Proc. Royal Soc. Lond. A
, Vol.
455
, No.
1992
,
1999
, pp. 4181–4203.
152.
McFadden
,
C.
,
Soto
,
C.
, and
Spencer
,
N, D.
, “
Adsorption and Surface Chemistry in Tribology
,”
Tribol. Intl.
, Vol.
30
, No.
12
,
1997
, pp. 881–888.
153.
Barcroft
,
F.
, “
A Technique for Investigating Reactions between EP Additives and Metal Surfaces at High Temperatures
,”
Wear
, Vol.
3
, No.
6
,
1960
, pp. 440–453.
154.
Rosset
,
E.
,
Mathieu
,
H.
, and
Landolt
,
D.
, “
A New Experimental Technique for the Study of the Surface Reactions of Extreme Pressure Additives at Elevated Temperatures
,”
Wear
, Vol.
94
, No.
2
,
1984
, pp. 125–133.
155.
Tang
,
Z.
and
Li
,
S.
, “
A Review of Recent Developments of Friction Modifiers for Liquid Lubricants (2007–Present)
,”
Curr. Opin. Solid State Mater. Sci.
, Vol.
18
, No.
3
,
2014
, pp. 119–139.
156.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lvovsky
,
M.
,
Nepomnyashchy
,
O.
,
Volovik
,
Y.
, and
Tenne
,
R.
, “
Mechanism of Friction of Fullerenes
,”
Indust. Lubr. Tribol.
, Vol.
54
, No.
4
,
2002
, pp. 171–176.
157.
Wu
,
Y.
,
Tsui
,
W.
, and
Liu
,
T.
, “
Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives
,”
Wear
, Vol.
262
, Nos.
7–8
,
2007
, pp. 819–825.
158.
Chiñas-Castillo
,
F.
and
Spikes
,
H.
, “
Mechanism of Action of Colloidal Solid Dispersions
,”
J. Tribol.
, Vol.
125
, No.
3
,
2003
, pp. 552–557.
159.
Hu
,
Z. S.
,
Lai
,
R.
,
Lou
,
F.
,
Wang
,
L. G.
,
Chen
,
Z. L.
,
Chen
,
G. X.
, and
Dong
,
J. X.
, “
Preparation and Tribological Properties of Nanometer Magnesium Borate as Lubricating Oil Additive
,”
Wear
, Vol.
252
, Nos.
5–6
,
2002
, pp. 370–374.
160.
Xiaodong
,
Z.
,
Xun
,
F.
,
Huaqiang
,
S.
, and
Zhengshui
,
H.
, “
Lubricating Properties of Cyanex 302: Modified MoS2 Microspheres in Base Oil 500SN
,”
Lubr. Sci.
, Vol.
19
, No.
1
,
2007
, pp. 71–79.
161.
Ginzburg
,
B.
,
Shibaev
,
L.
,
Kireenko
,
O.
,
Shepelevskii
,
A.
,
Baidakova
,
M.
, and
Sitnikova
,
A.
, “
Antiwear Effect of Fullerene C 6 0 Additives to Lubricating Oils
,”
Russ. J. Appl. Chem.
, Vol.
75
, No.
8
,
2002
, pp. 1330–1335.
162.
Zhou
,
J.
,
Yang
,
J.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
, “
Study on the Structure and Tribological Properties of Surface-Modified Cu Nanoparticles
,”
Mater. Res. Bull.
, Vol.
34
, No.
9
,
1999
, pp. 1361–1367.
163.
Rastogi
,
R.
,
Yadav
,
M.
, and
Bhattacharya
,
A.
, “
Application of Molybdenum Complexes of 1-Aryl-2, 5-Dithiohydrazodicarbonamides as Extreme Pressure Lubricant Additives
,”
Wear
, Vol.
252
, Nos.
9–10
,
2002
, pp. 686–692.
164.
Liu
,
G.
,
Li
,
X.
,
Qin
,
B.
,
Xing
,
D.
,
Guo
,
Y.
, and
Fan
,
R.
, “
Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface
,”
Tribol. Lett.
, Vol.
17
, No.
4
,
2004
, pp. 961–966.
165.
Tao
,
X.
,
Jiazheng
,
Z.
, and
Kang
,
X.
, “
The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive
,”
J. Phys. D, Appl. Phys.
, Vol.
29
, No.
11
,
1996
, p. 2932.
166.
Fangsuwannarak
,
K.
and
Triratanasirichai
,
K.
, “
Effect of Metalloid Compound and Bio-Solution Additives on Biodiesel Engine Performance and Exhaust Emissions
,”
Am. J. Appl. Sci.
, Vol.
10
, No.
10
,
2013
, pp. 1201–1213.
167.
Khond
,
V. W.
and
Kriplani
,
V.
, “
Effect of Nanofluid Additives on Performances and Emissions of Emulsified Diesel and Biodiesel Fueled Stationary CI Engine: A Comprehensive Review
,”
Renew. Sustain. Ener. Rev.
, Vol.
59
,
2016
, pp. 1338–1348.
168.
Sajeevan
,
A. C.
and
Sajith
,
V.
, “
Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation
,” J. Engineer., Vol.
2013
,
2013
, Article ID 589382.
169.
Sajith
,
V.
,
Sobhan
,
C.
, and
Peterson
,
G.
, “
Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel
,”
Adv. Mechan. Engineer.
, Vol.
2
,
2010
, p. 581407.
170.
Abdel-Hadi
,
E. A.-H.
,
Taher
,
S. H.
,
Torki
,
A. H. M.
, and
Hamad
,
S. S.
, “
Heat Transfer Analysis of Vapor Compression System Using Nano CuO-R134a
,”
2011 International Conference on Advanced Materials Engineering
, Vol.
15
,
IPCSIT Press
,
Singapore
,
2011
, pp. 80–84.
171.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U.
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
, Vol.
13
, No.
4
,
1999
, pp. 474–480.
172.
Bartelt
,
K.
,
Park
,
Y.
,
Liu
,
L.
, and
Jacobi
,
A.
, “
Flow-Boiling of R-134a/POE/CuO Nanofluids in a Horizontal Tube
,”
International Refrigeration and Air Conditioning Conference
, Paper 928, July 14–17,
School of Mechanical Engineering
,
Purdue Unversity
,
2008
.
173.
Bi
,
S.
,
Guo
,
K.
,
Liu
,
Z.
, and
Wu
,
J.
, “
Performance of a Domestic Refrigerator Using TiO 2-R600a Nano-Refrigerant as Working Fluid
,”
Energy Conver. Manage.
, Vol.
52
, No.
1
,
2011
, pp. 733–737.
174.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Intl.
, Vol.
102
,
2016
, pp. 88–98.
175.
Zhang
,
W.
,
Demydov
,
D.
,
Jahan
,
M. P.
,
Mistry
,
K.
,
Erdemir
,
A.
,
Malshe
,
A. P.
, “
Fundamental Understanding of the Tribological and Thermal Behavior of Ag–MoS2 Nanoparticle-Based Multi-Component Lubricating System
,”
Wear
, Vol.
288
,
2012
, pp. 9–16.
176.
Ma
,
J.
,
Mo
,
Y.
, and
Bai
,
M.
, “
Effect of Ag Nanoparticles Additive on the Tribological Behavior of Multialkylated Cyclopentanes (MACs)
,”
Wear
, Vol.
266
, Nos.
7–8
,
2009
, pp. 627–631.
177.
Ghaednia
,
H.
,
Babaei
,
H.
,
Jackson
,
R. L.
,
Bozack
,
M. J.
, and
Khodadadi
,
J.
, “
The Effect of Nanoparticles on Thin Film Elasto-Hydrodynamic Lubrication
,” Appl. Phys. Lett., Vol.
103
,
2013
, Paper No. 263111.
178.
Luo
,
T.
,
Wei
,
X.
,
Huang
,
X.
,
Huang
,
L.
, and
Yang
,
F.
, “
Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives
,”
Ceram. Intl.
, Vol.
40
, No.
5
,
2014
, pp. 7143–7149.
179.
Kedzierski
,
M. A.
, “
Effect of Concentration on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface
,”
Intl. J. Refrig.
, Vol.
49
,
2015
, pp. 36–48.
180.
Peña-Parás
,
L.
,
Taha-Tijerina
,
J.
,
Garza
,
L.
,
Maldonado-Cortés
,
D.
,
Michalczewski
,
R.
, and
Lapray
,
C.
, “
Effect of CuO and Al2O3 Nanoparticle Additives on the Tribological Behavior of Fully Formulated Oils
,”
Wear
, Vols.
332–333
,
2015
, pp. 1256–1261.
181.
Jiao
,
D.
,
Zheng
,
S.
,
Wang
,
Y.
,
Guan
,
R.
, and
Cao
,
B.
, “
The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives
,”
Appl. Surf. Sci.
, Vol.
257
, No.
13
,
2011
, pp. 5720–5725.
182.
Luo
,
T.
,
Wei
,
X.
,
Zhao
,
H.
,
Cai
,
G.
, and
Zheng
,
X.
, “
Tribology Properties of Al2O3/TiO2 Nanocomposites as Lubricant Additives
,”
Ceram. Intl.
, Vol.
40
, No.
7, Pt. A
,
2014
, pp. 10103–10109.
183.
Flores-Castañeda
,
M.
,
Camps
,
E.
,
Camacho-López
,
M.
,
Muhl
,
S.
,
García
,
E.
, and
Figueroa
,
M.
, “
Bismuth Nanoparticles Synthesized by Laser Ablation in Lubricant Oils for Tribological Tests
,”
J. Alloys Compounds
, Vol.
643
,
Suppl. 1
,
2015
, pp. S67–S70.
184.
Manning
,
T.
,
Field
,
R.
,
Klingaman
,
K.
,
Fair
,
M.
,
Bolognini
,
J.
,
Crownover
,
R.
,
Adam
,
C. P.
, et al
Innovative Boron Nitride-Doped Propellants
,”
Defence Technol.
, Vol.
12
, No.
2
,
2016
, pp. 69–80.
185.
Xu
,
N.
,
Zhang
,
M.
,
Li
,
W.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
, “
Study on the Selectivity of Calcium Carbonate Nanoparticles under the Boundary Lubrication Condition
,”
Wear
, Vol.
307
, Nos.
1–2
,
2013
, pp. 35–43.
186.
Shen
,
T.
,
Wang
,
D.
,
Yun
,
J.
,
Liu
,
Q.
,
Liu
,
X.
, and
Peng
,
Z.
, “
Tribological Properties and Tribochemical Analysis of Nano-Cerium Oxide and Sulfurized Isobutene in Titanium Complex Grease
,”
Tribol. Intl.
, Vol.
93
,
Pt. A
,
2016
, pp. 332–346.
187.
Yang
,
G.
,
Zhang
,
Z.
,
Zhang
,
S.
,
Yu
,
L.
, and
Zhang
,
P.
, “
Synthesis and Characterization of Highly Stable Dispersions of Copper Nanoparticles by a Novel One-Pot Method
,”
Mater. Res. Bull.
, Vol.
48
, No.
4
,
2013
, pp. 1716–1719.
188.
Hu
,
H.
,
Peng
,
H.
, and
Ding
,
G.
, “
Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant/Nanolubricant Mixture with Surfactant
,”
Intl. J. Refrig.
, Vol.
36
, No.
3
,
2013
, pp. 1045–1055.
189.
Pan
,
Q.
and
Zhang
,
X.
, “
Synthesis and Tribological Behavior of Oil-Soluble Cu Nanoparticles as Additive in SF15W/40 Lubricating Oil
,”
Rare Metal Mater. Engineer.
, Vol.
39
, No.
10
,
2010
, pp. 1711–1714.
190.
Yu
,
H.-L.
,
Xu
,
Y.
,
Shi
,
P.-J.
,
Xu
,
B.-S.
,
Wang
,
X.-L.
, and
Liu
,
Q.
, “
Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant
,”
Trans. Nonferrous Metals Soc. China
, Vol.
18
, No.
3
,
2008
, pp. 636–641.
191.
Wang
,
X. L.
,
Yin
,
Y. L.
,
Zhang
,
G. N.
,
Wang
,
W. Y.
, and
Zhao
,
K. K.
, “
Study on Antiwear and Repairing Performances about Mass of Nano-Copper Lubricating Additives to 45 Steel
,”
Physics Procedia.
, Vol.
50
,
2013
, pp. 466–472.
192.
Zhang
,
B.-S.
,
Xu
,
B.-S.
,
Xu
,
Y.
,
Gao
,
F.
,
Shi
,
P.-J.
, and
Wu
Y.-X.
, “
CU Nanoparticles Effect on the Tribological Properties of Hydrosilicate Powders as Lubricant Additive for Steel–Steel Contacts
,”
Tribol. Intl.
, Vol.
44
, Nos.
7–8
,
2011
, pp. 878–886.
193.
Zhang
,
C.
,
Zhang
,
S.
,
Yu
,
L.
,
Zhang
,
Z.
,
Wu
,
Z.
, and
Zhang
,
P.
, “
Preparation and Tribological Properties of Water-Soluble Copper/Silica Nanocomposite as a Water-Based Lubricant Additive
,”
Appl. Surface. Sci.
, Vol.
259
,
2012
, pp. 824–830.
194.
Kedzierski
,
M. A.
and
Gong
,
M.
, “
Effect of CuO Nanolubricant on R134a Pool Boiling Heat Transfer
,”
Intl. J. Refrig.
, Vol.
32
, No.
5
,
2009
, pp. 791–799.
195.
Shenoy
,
B. S.
,
Binu
,
K. G.
,
Pai
,
R.
,
Rao
,
D. S.
, and
Pai
,
R. S.
, “
Effect of Nanoparticles Additives on the Performance of an Externally Adjustable Fluid Film Bearing
,”
Tribol. Intl.
, Vol.
45
, No.
1
,
2012
, pp. 38–42.
196.
Kang
,
X.
,
Wang
,
B.
,
Zhu
,
L.
, and
Zhu
,
H.
, “
Synthesis and Tribological Property Study of Oleic Acid-Modified Copper Sulfide Nanoparticles
,”
Wear
, Vol.
265
, Nos.
1–2
,
2008
, pp. 150–154.
197.
Peng
,
D. X.
,
Kang
,
Y.
,
Hwang
,
R. M.
,
Shyr
,
S. S.
, and
Chang
,
Y. P.
, “
Tribological Properties of Diamond and SiO2 Nanoparticles Added in Paraffin
,”
Tribol. Intl.
, Vol.
42
, No.
6
,
2009
, pp. 911–917.
198.
Elomaa
,
O.
,
Hakala
,
T. J.
,
Myllymäki
,
V.
,
Oksanen
,
J.
,
Ronkainen
,
H.
,
Singh
,
V. K.
, and
Koskinen
,
J.
, “
Diamond Nanoparticles in Ethylene Glycol Lubrication on Steel–Steel High Load Contact
,”
Diamond Relat. Mater.
, Vol.
34
,
2013
, pp. 89–94.
199.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosyčevas
,
I.
, and
Kreivaitis
,
R.
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Intl.
, Vol.
60
,
2013
, pp. 224–232.
200.
Zhou
,
G.
,
Zhu
,
Y.
,
Wang
,
X.
,
Xia
,
M.
,
Zhang
,
Y.
, and
Ding
,
H.
. “
Sliding Tribological Properties of 0.45 % Carbon Steel Lubricated with Fe3O4 Magnetic Nano-Particle Additives in Baseoil
,”
Wear
, Vol.
301
, Nos.
1–2
,
2013
, pp. 753–757.
201.
Rabaso
,
P.
,
Ville
,
F.
,
Dassenoy
,
F.
,
Diaby
,
M.
,
Afanasiev
,
P.
,
Cavoret
,
J.
,
Vacher
,
B.
, and
Le Mogne
,
T.
, “
Boundary Lubrication: Influence of the Size and Structure of Inorganic Fullerene-Like MoS2 Nanoparticles on Friction and Wear Reduction
,”
Wear
, Vol.
320
,
2014
, pp. 161–178.
202.
Zhao
,
J.
,
He
,
Y.
,
Wang
,
Y.
,
Wang
,
W.
,
Yan
,
L.
, and
Luo
,
J.
, “
An Investigation on the Tribological Properties of Multilayer Graphene and MoS2 Nanosheets as Additives Used in Hydraulic Applications
,”
Tribol. Intl.
, Vol.
97
,
2016
, pp. 14–20.
203.
Greco
,
A.
,
Mistry
,
K.
,
Sista
,
V.
,
Eryilmaz
,
O.
, and
Erdemir
,
A.
, “
Friction and Wear Behaviour of Boron Based Surface Treatment and Nano-Particle Lubricant Additives for Wind Turbine Gearbox Applications
,”
Wear
, Vol.
271
, Nos.
9–10
,
2011
, pp. 1754–1760.
204.
Li
,
S.
,
Qin
,
H.
,
Zuo
,
R.
, and
Bai
,
Z.
, “
Tribological Performance of Mg/Al/Ce Layered Double Hydroxides Nanoparticles and Intercalated Products as Lubricant Additives
,”
Appl. Surface Sci.
, Vol.
353
,
2015
, pp. 643–650.
205.
Lahouij
,
I.
,
Vacher
,
B.
,
Martin
,
J.-M.
, and
Dassenoy
,
F.
, “
IF-MoS2 Based Lubricants: Influence of Size, Shape and Crystal Structure
,”
Wear
, Vol.
296
, Nos.
1–2
,
2012
, pp. 558–567.
206.
Tenne
,
R.
, “
Fullerene-Like Materials and Nanotubes from Inorganic Compounds with a Layered (2-D) Structure
,”
Colloids and Surfaces A: Physicochemical and Engineering Aspects
, Vol.
208
, Nos.
1–3
,
2002
, pp. 83–92.
207.
Rapoport
,
L.
,
Feldman
,
Y.
,
Homyonfer
,
M.
,
Cohen
,
H.
,
Sloan
,
J.
,
Hutchison
,
J. L.
, and
Tenne
,
R.
, “
Inorganic Fullerene-Like Material as Additives to Lubricants: Structure–Function Relationship
,”
Wear
, Vols.
225–229
,
Pt. 2
,
1999
, pp. 975–982.
208.
Li
,
S.
,
Qin
,
H.
,
Zuo
,
R.
, and
Bai
,
Z.
, “
Friction Properties of La-Doped Mg/Al Layered Double Hydroxide and Intercalated Product as Lubricant Additives
,”
Tribol. Intl.
, Vol.
91
,
2015
, pp. 60–66.
209.
Hou
,
X.
,
He
,
J.
,
Yu
,
L.
,
Li
,
Z.
,
Zhang
,
Z.
, and
Zhang
,
P.
, “
Preparation and Tribological Properties of Fluorosilane Surface-Modified Lanthanum Trifluoride Nanoparticles as Additive of Fluoro Silicone Oil
,”
Appl. Surface. Sci.
, Vol.
316
,
2014
, pp. 515–523.
210.
Xu
,
Y.
,
Hu
,
E.
,
Hu
,
K.
,
Xu
,
Y.
, and
Hu
,
X.
, “
Formation of an Adsorption Film of MoS2 Nanoparticles and Dioctyl Sebacate on a Steel Surface for Alleviating Friction and Wear
,”
Tribol. Intl.
, Vol.
92
,
2015
, pp. 172–183.
211.
Kalin
,
M.
,
Kogovšek
,
J.
, and
Remškar
,
M.
, “
Nanoparticles as Novel Lubricating Additives in a Green, Physically Based Lubrication Technology for DLC Coatings
,”
Wear
, Vol.
303
, Nos.
1–2
,
2013
, pp. 480–485.
212.
Kalin
,
M.
,
Kogovšek
,
J.
, and
Remškar
,
M.
, “
Mechanisms and Improvements in the Friction and Wear Behavior Using MoS2 Nanotubes as Potential Oil Additives
,”
Wear
, Vols.
280–281
,
2012
, pp. 36–45.
213.
Zhang
,
Z. J.
,
Zhang
,
J.
, and
Xue
,
Q. J.
, “
Synthesis and Characterization of a Molybdenum Disulfide Nanocluster
,”
J. Phys. Chem.
, Vol.
98
, Vol.
49
,
1994
, pp. 12973–12977.
214.
Santillo
,
G.
,
Deorsola
,
F. A.
,
Bensaid
,
S.
,
Russo
,
N.
, and
Fino
,
D.
, “
MoS2 Nanoparticle Precipitation in Turbulent Micromixers
,”
Chem. Engineer. J.
, Vols.
207–208
,
2012
, pp. 322–328.
215.
Xie
,
H.
,
Jiang
,
B.
,
He
,
J.
,
Xia
,
X.
, and
Pan
,
F.
, “
Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts
,”
Tribol. Intl.
, Vol.
93
,
Pt. A
,
2016
, pp. 63–70.
216.
Nunn
,
N.
,
Mahbooba
,
Z.
,
Ivanov
,
M. G.
,
Ivanov
,
D. M.
,
Brenner
,
D. W.
, and
Shenderova
,
O.
, “
Tribological Properties of Polyalphaolefin Oil Modified with Nanocarbon Additives
,”
Diamond Relat. Mater.
, Vol.
54
,
2015
, pp. 97–102.
217.
Meng
,
Y.
,
Su
,
F.
, and
Chen
,
Y.
, “
Synthesis of Nano-Cu/Graphene Oxide Composites by Supercritical CO2-Assisted Deposition as a Novel Material for Reducing Friction and Wear
,”
Chem. Engineer. J.
, Vol.
281
,
2015
, pp. 11–19.
218.
Dubey
,
M. K.
,
Bijwe
,
J.
, and
Ramakumar
,
S. S. V.
, “
Nano-PTFE: New Entrant as a Very Promising EP Additive
,”
Tribol. Intl.
, Vol.
87
,
2015
, pp. 121–131.
219.
Chou
,
R.
,
Battez
,
A. H.
,
Cabello
,
J. J.
,
Viesca
,
J. L.
,
Osorio
,
A.
, and
Sagastume
A.
, “
Tribological Behavior of Polyalphaolefin with the Addition of Nickel Nanoparticles
,”
Tribol. Intl.
, Vol.
43
, No.
12
,
2010
, pp. 2327–2332.
220.
Ye
,
P.
,
Jiang
,
X.
,
Li
,
S.
, and
Li
,
S.
, “
Preparation of NiMoO 2 S 2 Nanoparticle and Investigation of Its Tribological Behavior as Additive in Lubricating Oils
,”
Wear
, Vol.
253
, Nos.
5–6
,
2002
, pp. 572–575.
221.
Chen
,
Y.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Yu
,
L.
,
Zhang
,
P.
, and
Zhang
,
Z.
, “
Preparation of Nickel-Based Nanolubricants via a Facile In Situ One-Step Route and Investigation of Their Tribological Properties
,”
Tribol. Lett.
, Vol.
51
, No.
1
,
2013
, pp. 73–83.
222.
Gu
,
K.
,
Chen
,
B.
, and
Chen
,
Y.
, “
Preparation and Tribological Properties of Lanthanum-Doped TiO2 Nanoparticles in Rapeseed Oil
,”
J. Rare Earth
., Vol.
31
, No.
6
,
2013
, pp. 589–594.
223.
Abad
,
M. D.
and
Sánchez-López
,
J. C.
, “
Tribological Properties of Surface-Modified Pd Nanoparticles for Electrical Contacts
,”
Wear
, Vol.
297
, Nos.
1–2
,
2013
, pp. 943–951.
224.
Sánchez-López
,
J. C.
,
Abad
,
M. D.
,
Kolodziejczyk
,
L.
,
Guerrero
,
E.
, and
Fernández
,
A.
, “
Surface-Modified Pd and Au Nanoparticles for Anti-Wear Applications
,”
Tribol. Intl.
, Vol.
44
, No.
6
,
2011
, pp. 720–726.
225.
Rico
,
E. F.
,
Minondo
,
I.
, and
Cuervo
,
D. G.
, “
Rolling Contact Fatigue Life of AISI 52100 Steel Balls with Mineral and synthetic Polyester Lubricants with PTFE Nanoparticle Powder as an Additive
,”
Wear
, Vol.
266
, Nos.
7–8
,
2009
, pp. 671–677.
226.
Rico
,
E. F.
,
Minondo
,
I.
, and
Cuervo
,
D. G.
, “
The Effectiveness of PTFE Nanoparticle Powder as an EP Additive to Mineral Base Oils
,”
Wear
, Vol.
262
, Nos.
11–12
,
2007
, pp. 1399–1406.
227.
Yadgarov
,
L.
,
Petrone
,
V.
,
Rosentsveig
,
R.
,
Feldman
,
Y.
,
Tenne
,
R.
, and
Senatore
,
A.
, “
Tribological Studies of Rhenium Doped Fullerene-Like MoS2 Nanoparticles in Boundary, Mixed and Elasto-Hydrodynamic Lubrication Conditions
,”
Wear
, Vol.
297
, Nos.
1–2
,
2013
, pp. 1103–1110.
228.
Boshui
,
C.
,
Kecheng
,
G.
,
Jianhua
,
F.
,
Jiang
,
W.
,
Jiu
,
W.
, and
Nan
,
Z.
, “
Tribological Characteristics of Monodispersed Cerium Borate Nanospheres in Biodegradable Rapeseed Oil Lubricant
,”
Appl. Surface Sci.
, Vol.
353
,
2015
, pp. 326–332.
229.
Yu
,
H. L.
,
Xu
,
Y.
,
Shi
,
P. J.
,
Wang
,
H. M.
,
Zhao
,
Y.
,
Xu
,
B. S.
, and
Bai
,
Z. M.
, “
Tribological Behaviors of Surface-Coated Serpentine Ultrafine Powders as Lubricant Additive
,”
Tribol. Intl.
, Vol.
43
, No.
3
,
2010
, pp. 667–675.
230.
Zhao
,
F.
,
Bai
,
Z.
,
Fu
,
Y.
,
Zhao
,
D.
, and
Yan
,
C.
, “
Tribological Properties of Serpentine, La(OH)3 and Their Composite Particles as Lubricant Additives
,”
Wear
, Vol.
288
,
2012
, pp. 72–77.
231.
Bobbo
,
S
,
Fedele
,
L.
,
Fabrizio
,
M.
,
Barison
,
S.
,
Battiston
,
S.
, and
Pagura
,
C.
, “
Influence of Nanoparticles Dispersion in POE Oils on Lubricity and R134a Solubility
,”
Intl. J. Refrig.
, Vol.
33
, No.
6
,
2010
, pp. 1180–1186.
232.
Li
,
X.
,
Cao
,
Z.
,
Zhang
,
Z.
, and
Dang
,
H.
, “
Surface-Modification In Situ of Nano-SiO2 and Its Structure and Tribological Properties
,”
Appl. Surface Sci.
, Vol.
252
, No.
22
,
2006
, pp. 7856–7861.
233.
Zhang
,
S.
,
Hu
,
L.
,
Feng
,
D.
, and
Wang
,
H.
, “
Anti-Wear and Friction-Reduction Mechanism of Sn and Fe Nanoparticles as Additives of Multialkylated Cyclopentanes under Vacuum Condition
,”
Vacuum
, Vol.
87
,
2013
, pp. 75–80.
234.
Li
,
Z.
,
Hou
,
X.
,
Yu
,
L.
,
Zhang
,
Z.
, and
Zhang
,
P.
, “
Preparation of Lanthanum Trifluoride Nanoparticles Surface-Capped by Tributyl Phosphate and Evaluation of their Tribological Properties as Lubricant Additive in Liquid Paraffin
,”
Appl. Surface Sci.
, Vol.
292
,
2014
, pp. 971–977.
235.
Krishna Sabareesh
,
R.
,
Gobinath
,
N.
,
Sajith
,
V.
,
Das
,
S.
, and
Sobhan
,
C. B.
, “
Application of TiO2 Nanoparticles as a Lubricant-Additive for Vapor Compression Refrigeration Systems: An Experimental Investigation
,”
Intl. J. Refrig.
, Vol.
35
, No.
7
,
2012
, pp. 1989–1996.
236.
Binu
,
K. G.
,
Shenoy
,
B. S.
,
Rao
,
D. S.
, and
Pai
,
R.
, “
A Variable Viscosity Approach for the Evaluation of Load Carrying Capacity of Oil Lubricated Journal Bearing with TiO2 Nanoparticles as Lubricant Additives
,”
Proc. Mater. Sci.
, Vol.
6
,
2014
, pp. 1051–1067.
237.
Ye
,
W.
,
Cheng
,
T.
,
Ye
,
Q.
,
Guo
,
X.
,
Zhang
,
Z.
, and
Dang
,
H.
, “
Preparation and Tribological Properties of Tetrafluorobenzoic Acid-Modified TiO2 Nanoparticles as Lubricant Additives
,”
Mater. Sci. Engineer. A
, Vol.
359
, Nos.
1–2
,
2003
, pp. 82–85.
238.
Zulkifli
,
N. W. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
, and
Yunus
,
R.
, “
Experimental Analysis of Tribological Properties of Biolubricant with Nanoparticle Additive
,”
Proc. Engineer.
, Vol.
68
,
2013
, pp. 152–157.
239.
Peña-Parás
,
L.
,
Taha-Tijerina
,
J.
,
García
,
A.
,
Maldonado
,
D.
,
Nájera
,
A.
,
Cantú
,
P.
, and
Ortiz
,
D.
, “
Thermal Transport and Tribological Properties of Nanogreases for Metal-Mechanic Applications
,”
Wear
, Vols.
332–333
,
2015
, pp. 1322–1326.
240.
Kao
,
M.-J.
and
Lin
,
C.-R.
, “
Evaluating the Role of Spherical Titanium Oxide Nanoparticles in Reducing Friction between Two Pieces of Cast Iron
,”
J. Alloys Compounds
, Vol.
483
, Nos.
1–2
,
2009
, pp. 456–459.
241.
Tan
,
K.-H.
,
Awala
,
H.
,
Mukti
,
R. R.
,
Wong
,
K.-L.
,
Ling
,
T. C.
,
Mintova
,
S.
, and
Ng
,
E.-P.
, “
Zeolite Nanoparticles as Effective Antioxidant Additive for the Preservation of Palm Oil-Based Lubricant
,”
J. Taiwan Inst. Chem. Engineer.
, Vol.
58
,
2016
, pp. 565–571.
242.
Song
,
X.
,
Zheng
,
S.
,
Zhang
,
J.
,
Li
,
W.
,
Chen
,
Q.
, and
Cao
,
B.
, “
Synthesis of Monodispersed ZnAl2O4 Nanoparticles and Their Tribology Properties as Lubricant Additives
,”
Mater. Res. Bull.
, Vol.
47
, No.
12
,
2012
, pp. 4305–4310.
243.
Hernandez Battez
,
A.
,
Fernandez Rico
,
J. E.
,
Navas Arias
,
A.
,
Viesca Rodriguez
,
J. L.
,
Chou Rodriguez
,
R.
, and
Diaz Fernandez
,
J. M.
, “
The Tribological Behaviour of ZnO Nanoparticles as an Additive to PAO6
,”
Wear
, Vol.
261
, Nos.
3–4
,
2006
, pp. 256–263.
244.
Alves
,
S. M.
,
Barros
,
B. S.
,
Trajano
,
M. F.
,
Ribeiro
,
K. S. B.
, and
Moura
,
E.
, “
Tribological Behavior of Vegetable Oil-Based Lubricants with Nanoparticles of Oxides in Boundary Lubrication Conditions
,”
Tribol. Intl.
, Vol.
65
,
2013
, pp. 28–36.
245.
Ma
,
S.
,
Zheng
,
S.
,
Cao
,
D.
, and
Guo
,
H.
, “
Anti-Wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive
,”
Particuology
, Vol.
8
, No.
5
,
2010
, pp. 468–472.
246.
He
,
X.
,
Xiao
,
H.
,
Choi
,
H.
,
Díaz
,
A.
,
Mosby
,
B.
,
Clearfield
,
A.
, and
Liang
,
H.
, “
α-Zirconium Phosphate Nanoplatelets as Lubricant Additives
,”
Colloids Surfaces A, Physicochem. Engineer. Aspects
, Vol.
452
,
2014
, pp. 32–38.
247.
Moshkovith
,
A.
,
Perfiliev
,
V.
,
Lapsker
,
I.
,
Fleischer
,
N.
,
Tenne
,
R.
, and
Rapoport
,
L.
, “
Friction of Fullerene-Like WS2 Nanoparticles: Effect of Agglomeration
,”
Tribol. Lett.
, Vol.
24
, No.
3
,
2006
, pp. 225–228.
248.
Henry
,
C. R.
, “
Morphology of Supported Nanoparticles
,”
Prog. Surface Sci.
, Vol.
80
, Nos.
3–4
,
2005
, pp. 92–116.
249.
Huitink
,
D.
,
Zarrin
,
T.
,
Sanders
,
M.
,
Kundu
,
S.
, and
Liang
,
H.
, “
Effects of Particle-Induced Crystallization on Tribological Behavior of Polymer Nanocomposites
,” J. Tribol., Vol.
133
, No.
2
,
2011
, Paper No. 021603.
250.
Huitink
,
D.
,
Kundu
,
S.
,
Park
,
C.
,
Mallick
,
B.
,
Huang
,
J. Z.
, and
Liang
,
H.
, “
Nanoparticle Shape Evolution Identified through Multivariate Statistics
,”
J Phys. Chem. A
, Vol.
114
, No.
17
,
2010
, pp. 5596–5600.
251.
Joly-Pottuz
,
L.
,
Martin
,
J. M.
,
Dassenoy
,
F.
,
Belin
,
M.
,
Montagnac
,
G.
,
Reynard
,
B.
, and
Fleischer
,
N.
, “
Pressure-Induced Exfoliation of Inorganic Fullerene-Like WS2 Particles in a Hertzian Contact
,” J. Appl. Phys., Vol.
99
,
2006
, Paper No. 023524.
252.
Joly-Pottuz
,
L.
and
Ohmae
,
N.
, “
Carbon-Based Nanolubricants
,”
Nanolubricants
,
Martin
J. M.
and
Ohmae
N.
, Eds.,
John Wiley
,
New York
,
2008
, pp. 93–147.
253.
Tevet
,
O.
,
Von-Huth
,
P.
,
Popovitz-Biro
,
R.
,
Rosentsveig
,
R.
,
Wagner
,
H. D.
, and
Tenne
,
R.
, “
Friction Mechanism of Individual Multilayered Nanoparticles
,”
Proc. NAS
, Vol.
108
, No.
50
,
2011
, pp. 19901–19906.
254.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-Biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
, “
Tribological Properties of WS2 Nanoparticles under Mixed Lubrication
,”
Wear
, Vol.
255
, Nos.
7–12
,
2003
, pp. 785–793.
255.
Fischer
,
A.
, “
Well-Founded Selection of Materials for Improved Wear Resistance
,”
Wear
, Vol.
194
, Nos.
1–2
,
1996
, pp. 238–245.
256.
Rapoport
,
L.
,
Bilik
,
Y.
,
Feldman
,
Y.
,
Homyonfer
,
M.
,
Cohen
,
S.
, and
Tenne
,
R.
, “
Hollow Nanoparticles of WS2 as Potential Solid-State Lubricants
,”
Nature
, Vol.
387
,
1997
, pp. 791–793.
257.
Rapoport
,
L.
,
Nepomnyashchy
,
O.
,
Lapsker
,
I.
,
Verdyan
,
A.
,
Soifer
,
Y.
,
Popovitz-Biro
,
R.
, and
Tenne
,
R.
, “
Friction and Wear of Fullerene-Like WS2 under Severe Contact Conditions: Friction of Ceramic Materials
,”
Tribol. Lett.
, Vol.
19
, No.
2
,
2005
, pp. 143–149.
258.
Joly-Pottuz
,
L.
,
Dassenoy
,
F.
,
Belin
,
M.
,
Vacher
,
B.
,
Martin
,
J.
, and
Fleischer
,
N.
, “
Ultralow-Friction and Wear Properties of IF-WS2 under Boundary Lubrication
,”
Tribol. Lett.
, Vol.
18
, No.
4
,
2005
, pp. 477–485.
259.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
, “
Graphene: A New Emerging Lubricant
,”
Mater. Today.
, Vol.
17
, No.
1
,
2014
, pp. 31–42.
260.
Onodera
,
T.
,
Morita
,
Y.
,
Suzuki
,
A.
,
Koyama
,
M.
,
Tsuboi
,
H.
,
Hatakeyama
,
N.
,
Endou
,
A.
,
Takaba
,
H.
,
Kubo
,
M.
,
Dassenoy
,
F.
,
Minfray
,
C.
,
Joly-Pottuz
,
L.
,
Martin
,
J.-M.
, and
Miyamoto
,
A.
, “
A Computational Chemistry Study on Friction of H-MoS2. Part I. Mechanism of Single Sheet Lubrication
,”
J. Phys. Chem. B
, Vol.
113
, No.
52
,
2009
, pp. 16526–16536.
261.
He
,
X.
,
Xiao
,
H.
,
Kyle
,
J. P.
,
Terrell
,
E. J.
, and
Liang
,
H.
, “
Two-Dimensional Nanostructured Y2O3 Particles for Viscosity Modification
,” Appl. Phys. Lett., Vol.
104
,
2014
, Paper No. 163107.
262.
Spear
,
J. C.
,
Ewers
,
B. W.
, and
Batteas
,
J. D.
, “
2D-Nanomaterials for Controlling Friction and Wear at Interfaces
,”
Nano Today
, Vol.
10
, No.
3
,
2015
, pp. 301–314.
263.
Xiao
,
H.
,
Dai
,
W.
,
Kan
,
Y.
,
Clearfield
,
A.
, and
Liang
,
H.
, “
Amine-Intercalated α-Zirconium Phosphates as Lubricant Additives
,”
Appl. Surface Sci.
, Vol.
329
,
2015
, pp. 384–389.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal