Skip to Main Content
Skip Nav Destination
ASTM Manuals
Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing
By
George E. Totten
George E. Totten
Editor
1
G. E. Totten & Associates, LLC
,
Seattle, WA
US
Search for other works by this author on:
Rajesh J. Shah
Rajesh J. Shah
Section Editor
2
Koehler Instrument Company
,
Holtsville, NY
US
Search for other works by this author on:
David R. Forester
David R. Forester
Section Editor
3
Fuel Quality Services, Inc.
,
Flowery Branch, GA
US
Search for other works by this author on:
ISBN:
978-0-8031-7089-6
No. of Pages:
1806
Publisher:
ASTM International
Publication date:
2019

Four processes for the conversion of coal to liquid products are described. Pyrolysis is the simplest of these processes, but usually less than 50 % of the carbon can be converted to liquid product with the remainder being a carbon char. Direct coal liquefaction resembles pyrolysis except it is conducted in an atmosphere of high hydrogen pressure. Modern direct coal liquefaction processes involves a catalyst that is active for hydrogenation. In one approach, the catalyst is present in the reactor in cases in which the conversion of coal occurs and a highly hydrogenated solvent is generated in a separate catalytic hydrogenation reactor. Today, direct coal liquefaction is being practiced commercially in China, and these processes utilize an iron catalyst. A significant fraction of the heteroatoms remain in the initial liquid products of these two processes. The Fischer-Tropsch synthesis (FTS) and methanol-to-gasoline (MTG) conversion are indirect coal liquefaction processes. In the first step, the coal is converted to a synthesis gas (mixture of hydrogen and carbon monoxide), which then is cleaned of catalyst poisons. The hydrogen–carbon monoxide ration is adjusted to about 2:1, which is needed for the next step. For FTS, both low- and high-temperature processes are utilized commercially. To operate the high-temperature process only, dry gases and liquid fuels are produced. With low-temperature FTS, one-half or more of the product is a wax that must be hydrocracked to produce gasoline and diesel range fuels. Commercially, only the Sasol operation in Secunda and the recent Chinese plants use iron catalysts; all other plants use cobalt catalysts. The other indirect process first converts the synthesis gas to methanol, which is converted to a high-octane gasoline using a ZSM-5 or similar zeolite catalyst. A commercial-scale plant was operated in New Zealand. The products from the indirect processes are essentially free of heteroatoms and are environmentally friendly.

1.
Mathews
,
J. P.
and
Chaffee
,
A. L.
, “
The Molecular Representations of Coal: A Review
,”
Fuel
, Vol.
96
,
2012
, pp. 1–14.
2.
Davidson
,
R. M.
,
Studying the Structural Chemistry of Coal
,
IEA
,
London
, April
2004
.
3.
Levine
,
D. G.
,
Schlosberg
,
R. H.
, and
Silbernagel
,
B. G.
, “
Understanding the Chemistry and Physics of Coal Structure
,
Proc. Natl. Acad. Sci.
, Vol.
79
, No.
10
, May
1982
, pp. 3365–3370.
4.
Ad Hoc Panel on Liquefaction of Coal, Committee on Processing and Utilization of Fossil Fuels
,
Assessment of Technology for the Liquefaction of Coal
,
National Academy of Sciences
,
Washington, DC
,
1977
.
5.
Hattingh
,
B. B.
, “
Product Evaluation and Reaction Modelling for the Devolatilization of Large Coal Particles
,” Ph.D. diss.,
North-West University
, South Africa,
2012
.
6.
Lee
,
S.
,
Speight
,
J. G.
, and
Loyalka
,
S. K.
, Eds.,
Handbook of Alternative Fuel Technologies
, 2nd ed.,
CRC Press
,
Boca Raton, FL
,
2015
, p. 88.
7.
Eddinger
,
R. T.
,
Jones
,
J. F.
, and
Seglin
,
L.
,
Pyrolysis of coal
. U.S. Patent 3,375,175, March 26,
1968
.
8.
Telesca
,
D. R.
, “
Control Technology Assessment for Coal Gasification and Liquefaction Processes
,” U.S. DoE Contract 211-78-0084,
U.S. Department of Energy
,
Washington, DC
, April,
1982
.
9.
Encoal Mild Gasification Project: Commercial Plant Feasibility Study
,” U.S. DoE Contract No. DE-FC21-90MC27339,
U.S. Department of Energy
,
Washington, DC
, September
1997
.
10.
Durie
,
R. A.
,
The Science of Victorian Brown Coal
,
Butterworth-Heinemann
,
Ltd., Oxford, England
,
1991
.
11.
Fletcher
,
T. H.
,
Kerstein
,
A. R.
,
Pugmire
,
R. J.
,
Solum
,
M. S.
, and
Grant
,
D. M.
, “
Chemical Percolation Model for Devolatilization. 3. Direct Use of 13C NMR Data to Predict Effects of Coal Type
,”
Energy Fuels
, Vol.
6
, No.
4
,
1992
, pp. 414–431.
12.
van Heek
,
K. H.
,
Strobel
,
B. O.
, and
Wanzi
,
W.
, “
Coal Utilization Processes and Their Application to Waste Recycling and Biomass Conversion
,”
Fuel
, Vol.
73
, No.
7
,
1994
, pp. 1135–1143.
13.
Wu
,
W. R. K.
,
Storch
,
H. H.
, “
Hydrogenation of Coal and Tar
,”
Bureau of Mines Bull.
633
,
1968
.
14.
Eccles
,
R. M.
and
DeVaux
,
G. R.
, “
Current Status of H-Coal Commercialization
,” NTIS Report No. DE81903476, Section 7,
National Technical Information Service
, Springfield, VA, May
1981
.
15.
Burke
,
F. P.
,
Brandes
,
S. D.
,
McCoy
,
D. C.
,
Winschel
,
Gray
,
D.
, and
Tomlinson
,
G.
, “
Summary Report of the DOE Direct Liquefaction Process Development Campaign of the Late Twentieth Century: Topical Report
,” DOE Contract DE-AC22-94PC93054,
U.S. Department of Energy
, Washington, DC, July
2001
.
16.
H-Coal Pilot Plant, Final Report, Volumes I-X
,
Ashland Synthetic Fuels, Inc.
, Ashland, KY, DOE Contract No. DE-AC05-76ET10143, April
1984
.
17.
EDS Coal Liquefaction Process Development: Phase V. Final Technical Progress Report, Volumes I, II, and III
, Contract No. AB01-77ET10069 and DE-FC05-77ET10069, 1981, 1984.
18.
McGuckin
,
J.
, “
Exxon Donor Solvent Coal Liquefaction Process
,” Technical Report, EPA-AA-SDSB-82-06, February
1982
.
19.
Kaneko
,
T.
,
Derbyshire
,
F.
,
Ehchiro
,
M.
,
Gray
,
D.
, and
Li
,
K.
, “
Coal Liquefaction
,”
Ullmann's Encyclopedia of Industrial Chemistry
,
Wiley-VCH Verlag GmbH & Co.
,
KGaA, Weinheim
,
2012
.
20.
Part 2 CCT Overview, 4A1, Coal Liquefaction Technology Development in Japan
, http://www.jcoal.or.jp/eng/cctinjapan/2_4A1.pdf (accessed March 10, 2016).
21.
Part 2 CCT Overview, 4A2, Bituminous Coal Liquefaction Technology (NEDOL)
, http://www.jcoal.or.jp/eng/cctinjapan/2_4A2.pdf (accessed March 10, 2016).
22.
Kimber
,
G. M.
, “
Energy for the Future: Coal Liquefaction for the European Environment—A History of UK Coal Liquefaction
,” Report No. Coal R 078.
23.
Review of Worldwide Coal to Liquids, R, D&D Activities and the Need for Further Initiatives within Europe
,
IEA Clean Coal Centre
, June
2009
, p. 33.
24.
Dadyburjor
,
D. B.
and
Liu
,
Z.
, “
Coal Liquefaction
,” in
Kirk-Othmer Encyclopedia of Chemical Technology
,
Wiley & Sons
,
New York
,
2003
.
25.
Shu
,
G.
, “
Shenhua's DCL Project: Technical Innovation and Latest Developments
,”
Cornerstone
, Vol.
1
, No.
3
,
2013
, pp. 44–48.
26.
Davis
,
B. H.
and
Hower
L.
, “
Coal Technology for Power, Liquid Fuels, and Chemicals
,”
Handbook of Industrial Chemistry and Biotechnology
, 12th ed., Vol.
1.
,
Kent
J. A.
, Ed.,
Spring Science and Business Media
,
New York
,
2012
, pp. 749–805.
27.
Whitehurst
,
D. D.
,
Mitchell
,
T. O.
, and
Farcasiu
,
M.
,
Coal Liquefaction: The Chemistry and Technology of Thermal Processes
,
Academic Press
,
New York
,
1980
.
28.
Keogh
,
R. A.
,
Tsai
,
K.
,
Xu
,
L.
, and
Davis
,
B. H.
, “
Liquefaction Pathways of U.S. Bituminous Coals
,”
Energy & Fuels
, Vol.
5
, No.
5
,
1991
, p. 625.
29.
Keogh
,
R. A.
and
Davis
,
B. H.
, “
Coal Liquefaction: A Common Reaction Pathway for Bituminous Coals
,” unpublished data,
1989
.
30.
Dautzenberg
,
F.
and
De Deken
,
J. C.
, “
Modes of Operation in Hydrodemetallization
,”
Preprints ACS, Div. Petrol. Chem.
, Vol.
30
, No.
1
,
1985
, pp. 8–20.
31.
Comolli
,
A. G.
and
Hippo
,
E. J.
,
Coal catalytic hydrogenation process using direct coal slurry feed to reactor with controlled mixing conditions
. U.S. Patent 4,495,055, January 22,
1985
.
32.
Ning
,
W.
, “
Coal to Liquids: Why and How It Makes the Case in China
,”
SSRN
, March 1,
2012
, http://ssrn.com/abstract=2190078 (accessed March, 10, 2016).
33.
Su
,
H.
and
Fletcher
,
J. J.
, “
Carbon Capture and Storage in China: Options for the Shenhua Direct Coal Liquefaction Plant
,” Int. Assoc. Energy Economics, Second Quarter,
2010
, p. 29.
34.
Miller
,
C. L.
, “
Coal Conversion: Pathway to Alternate Fuels
,”
2007 EIA Energy Outlook Modeling and Data Conference
,
Washington, DC
, March 28,
2007
.
35.
Malhotra
,
R.
, “
Direct Coal Liquefaction: Lessons Learned
,”
GCEP Advanced Coal Workshop
,
Brigham Young University
,
Provo, UT
, March 16,
2005
.
36.
Lange
,
J.-P.
, “
Methanol Synthesis: A Short Review of Technology Improvements
,”
Catal. Today
, Vol.
64
, Nos.
1–2
,
2001
, pp. 3–8.
38.
Chinchen
,
G. C.
,
Denny
,
P. J.
,
Jennings
,
J. R.
,
Spencer
,
M. S.
, and
Waugh
,
K. C.
, “
Synthesis of Methanol. Part 1. Catalysts and Kinetics
,”
Appl. Catal.
, Vol.
36
, Nos.
1–2
,
1988
, pp. 1–65.
39.
Chinchen
,
G. C.
,
Denny
,
P. J.
,
Parker
,
D. G.
,
Short
,
G. D.
,
Spencer
,
M. S.
,
Waugh
,
K. C.
, and
Whan
,
F. A.
, “
The Activity of Cu-ZnO-Al2O3 Methanol Synthesis Catalysts
,”
Preprints ACS, Div. Fuel Chem.
, Vol.
29
, No.
5
,
1984
, p. 178.
40.
Klier
,
K.
,
Chatikavanu
,
V.
,
Herman
,
R. G.
, and
Simmons
,
G. W.
, “
Catalytic Synthesis of Methanol from CO/H2. IV. The Effects of Carbon Dioxide
,”
J. Catal.
, Vol.
74
, No.
2
,
1982
, pp. 343–360.
41.
Yang
,
Y.
,
Mims
,
C. A.
,
Mei
,
D. H.
,
Peden
,
C. H. F.
, and
Campbell
,
C. T.
, “
Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: The Source of C in Methanol and the Role of Water
,”
J. Catal.
, Vol.
298
,
2013
, pp. 10–17.
42.
Yang
,
Y.
,
Mei
,
D.
,
Peden
,
C.
,
Campbell
,
C. T.
, and
Mims
,
C. A.
, “
Surface Bound Intermediates in Low Temperature Methanol Synthesis on Copper: Participants and Spectators
,”
ACS Catal.
, Vol.
5
, No.
12
,
2015
, pp. 7328–7337.
43.
de Klerk
,
A.
, “
Engineering Evaluation of Direct Methane to Methanol Conversion
,”
Energy Sci. Eng.
, Vol.
3
, No.
1
,
2015
, pp. 60–70.
44.
Chang
,
C. D.
and
Silvestri
,
A. J.
, “
The Conversion of Methanol and Other O-compounds to Hydrocarbons over Zeolite Catalysts
,”
J. Catal.
, Vol.
47
, No.
2
,
1977
, pp. 249–259.
45.
Keil
,
F. J.
, “
Methanol-to-Hydrocarbons: Process Technology
,”
Micropor. Mesopor. Mater.
, Vol.
29
, Nos.
1–2
,
1999
, pp. 49–66.
46.
Meisel
,
S. L.
, “
Fifty Years of Research in Catalysis
,”
Studies Surf. Sci. Catal.
, Vol.
36
,
1988
, pp. 17–37.
47.
Yurchak
,
S.
, “
Development of Mobil's Fixed Bed Methanol-to-Gasoline (MTG) Process
,”
Studies Surf. Sci. Catal.
, Vol.
36
,
1988
, pp. 251–272.
48.
Edwards
,
W.
and
Avidan
,
A.
, “
Conversion Model Aids Scale-Up of Mobil's Fluid-Bed MTG Process
,”
Chem. Eng. Sci.
, Vol.
41
, No.
4
,
1986
, pp. 829–835.
49.
Helton
,
T.
and
Hindman
,
M.
, “
Methanol to Gasoline Technology: An Alternative for Liquid Fuel Production
,” GTL Technology Forum,
Houston, TX
, July 30–31,
2014
.
50.
Rouhi
,
A. M.
, “
From Coal to Chemical Building Blocks: An Academic Success Story for China
,” C&E News, August 31,
2015
, p. 30.
51.
Meisel
,
S. L.
,
McCullough
,
J. P.
,
Lechthaler
,
C. H.
, and
Weisz
,
P. B.
, “
Gasoline from Methanol in One Step
,”
Chemtech
, Vol.
6
, No.
2
,
1976
, p. 86.
52.
Chang
,
C. D.
and
Silvestri
,
A. J.
, “
MTG. Origin, Evolution, Operation
,”
Chemtech
, Vol.
17
, No.
10
,
1987
, pp. 624–631.
53.
Tau
,
L.-M.
and
Davis
,
B. H.
, “
Isotopic Tracer Studies of the Conversion of Methanol and Ethene or Propene to Gasoline Range Hydrocarbons
,”
Energy Fuels
, Vol.
7
, No.
2
,
1993
, pp. 249–256.
54.
Bao
,
S.
,
Tau
,
L.-M.
, and
Davis
,
B. H.
, “
Investigation of Hydrogen Transfer from Carbon-14 Ring Labeled Methylcyclohexane during the Methanol-to-Gasoline Reaction
,”
J. Catal.
, Vol.
111
, No.
2
,
1988
, pp. 436–439.
55.
Tau
,
L.-M.
,
Bao
,
S.
, and
Davis
,
B. H.
, “
Conversion of [14C] Methanol and Propane Mixtures with H-ZSM-5
,”
J. Catal.
, Vol.
114
, No.
1
,
1988
, pp. 190–195.
56.
Wulfers
,
M. J.
and
Jentoft
,
F. C.
, “
The Role of Cyclopentadienium Ions in Methanol-to-Hydrocarbons Chemistry
,”
ACS Catal.
, Vol.
4
, No.
10
,
2014
, pp. 3521–3532.
57.
Dahl
,
I. M.
and
Kolboe
,
S.
, “
On the Reaction Mechanism for Propene Formation in the MTO Reactions over SAPOI-34
,”
Catal. Lett.
, Vol.
20
, Nos.
3–4
,
1993
, pp. 329–336.
58.
Tau
,
L.-M.
,
Fort
,
A. W.
, and
Davis
,
B. H.
, “
Mechanism of the ZSM-5 Catalyzed Formation of Hydrocarbons from Methanol-Propanol
,”
Stud. Surf. Sci. Technol.
, Vol.
28
,
1986
, pp. 899–906.
59.
Tau
,
L.-M.
and
Davis
,
B. H.
, “
Isotopic Tracer Studies of the Methanol-to-Gasoline Reaction
,” Preprints, 11th Canadian Symposium on Catalysis,
1990
.
60.
Tau
,
L.-M.
,
Fort
,
A. W.
,
Bao
,
S.
, and
Davis
,
B. H.
, “
Methanol to Gasoline: 14C Tracer Studies of the Conversion of Methanol/Higher Alcohol Mixtures over ZSM-5
,”
Fuel Process. Technol.
, Vol.
26
, No.
3
,
1990
, pp. 209–219.
61.
Svelle
,
S.
,
Joensen
,
F.
,
Nerlov
,
J.
,
Olsbye
,
U.
,
Lillerud
,
K. P.
,
Kolboe
,
S.
, and
Bjørgen
,
M.
, “
Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5: Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes
,”
J. Amer. Chem. Soc.
, Vol.
128
, No.
46
,
2006
, pp. 14770–14771.
62.
Bjørgen
,
M.
,
Svelle
,
S.
,
Joensen
,
F.
,
Nerlov
,
J.
,
Kolboe
,
S.
,
Bonino
,
F.
,
Palumbo
,
L.
,
Bordiga
,
S.
, and
Olsbye
,
U.
, “
Conversion of Methanol to Hydrocarbons over Zeolite H-ZSM-5: On the Origin of the Olefinic Species
,”
J. Catal.
, Vol.
249
, No.
2
,
2007
, pp. 195–207.
63.
Bare
,
S. R.
, “
Methanol to Olefins (MTO): Development of a Commercial Catalytic Processes
,” FHI Lecture, November 30,
2007
.
64.
Sun
,
X.
, “
Catalytic Conversion of Methanol to Olefins over HZSM-5 Catalysts
,” Ph.D. diss.,
Technische Universität München
,
2013
.
65.
Olsbye
,
U.
,
Svelle
,
S.
,
Bjørgen
,
M.
,
Beato
,
P.
,
Jassens
,
T. V. W.
,
Joensen
,
F.
,
Bordiga
,
S.
, and
Lillerud
,
K. P.
, “
Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity
,”
Angew. Chem. Int. Ed.
, Vol.
51
, No.
24
,
2012
, pp. 5810–5831.
66.
Bercaw
,
J. E.
,
Grubbs
,
R. H.
,
Hazari
,
N.
,
Labinger
,
J. A.
, and
Li
,
X.
, “
Enhanced Selectivity in the Conversion of Methanol to 2,2,3-Trimethylbutane (Triptane) over Zinc Iodide by Added Phosphorous or Hypophosphorous Acid
,”
Chem. Commun.
, No.
28
,
2007
, pp. 2974–2976.
67.
Walspurger
,
S.
,
Surya Prakash
,
G. K.
, and
Olah
,
G. A.
, “
Zinc Catalyzed Conversion of Methanol-Methyl Iodide to Hydrocarbons with Increased Formation of Triptane
,”
Appl. Catal.
, Vol.
336
, Nos.
1–2
.
2008
, pp. 48–53.
68.
Hemelsoet
,
K.
,
Van der Mynsbrugge
,
J.
,
De Wispelaere
,
K.
,
Waroquier
,
M.
, and
Van Speybroeck
,
V.
, “
Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment
,”
Chem. Phys. Chem.
, Vol.
14
, No.
8
,
2013
, pp. 1526–1545.
69.
Davis
,
B. H.
, “
Fischer-Tropsch Synthesis: Overview of Reactor Development and Future Potentialities
,”
Topics in Catal.
, Vol.
32
, Nos.
3–4
,
2005
, pp. 143–168.
70.
Steynberg
,
A. P.
,
Dry
,
M. E.
,
Breman
,
B. B.
, and
Davis
,
B. H.
, “
Fischer-Tropsch Reactors
,”
Fischer-Tropsch Technology Studies in Surface Science and Catalysis
,
Steynberg
A. P.
,
Dry
M. E.
, Eds.,
Elsevier
,
Amsterdam, The Netherlands
, 152,
2004
, pp. 64–19.
71.
Tau
,
L.-M.
,
Dabbagh
,
H.
,
Bao
,
S.
, and
Davis
,
B. H.
, “
Fischer-Tropsch Synthesis: Evidence for Two Chain Growth Mechanisms
,”
Catal. Lett
., Vol.
7
, Nos.
1–4
,
1990
, p. 127.
72.
Yang
,
J.
,
Shafer
,
W. D.
,
Pendyala
,
V. R. R.
,
Jacobs
,
G.
,
Chen
,
D.
,
Holmen
,
A.
, and
Davis
,
B. H.
, “
Fischer-Tropsch Synthesis: Using Deuterium as a Tool to Investigate Primary Product Distribution
,”
Catal. Lett.
, Vol.
144
, No.
3
,
2014
, pp. 524–530.
73.
Daly
,
F.
,
Richard
,
L.
, and
Rugmini
,
S.
,
Fischer-Tropsch Catalysts
, Patent Application #WO2012107718 A2, August 16,
2012
.
74.
Leendert Bezemer
,
G.
,
Bitter
,
J. H.
,
Kuipers
,
H. P. C. E.
,
Oosterbeek
,
H.
,
Holewijn
,
J. E.
,
Xu
,
X.
,
Kapteijn
,
F.
,
Jos van Dillen
,
A.
, and
de Jong
,
K. P.
, “
Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts
,”
J. Amer. Chem. Soc.
, Vol.
128
, No.
12
,
2006
, pp. 3956–3964.
75.
Strom
,
D. A.
, Ph.D. diss.,
Stanford University, Stanford
, CA,
1978
.
76.
Boudart
,
M.
and
McDonald
,
M. A.
, “
Structure Sensitivity of Hydrocarbon Synthesis from CO and H2
,”
J. Phys. Chem.
, Vol.
88
, No.
11
,
1984
, pp. 2185–2195.
77.
Mabaso
,
E. I.
,
van Steen
,
E.
, and
Claeys
,
M.
, “
Fischer-Tropsch Synthesis on Supported Iron Crystallites of Different Size
,”
Proceedings DGMK/SCI-Conference Synthesis Gas Chemistry
, October 4–6,
2006
,
DGMK
,
Dresden, Germany
, pp. 93–100.
78.
King
,
D. C.
, “
A Fischer-Tropsch Study of Supported Ruthenium Catalysts
,”
J. Catal.
, Vol.
51
, No.
3
,
1978
, pp. 386–397.
79.
Kellner
,
C. S.
and
Bell
,
A. T.
, “
Effects of Dispersion on the Activity and Selectivity of Alumina-Supported Ruthenium Catalysts for Carbon Monoxide Hydrogenation
,”
J. Catal.
, Vol.
75
, No.
2
,
1982
, pp. 251–261.
80.
Okuhara
,
T.
,
Kimura
,
T.
,
Kohayashi
,
K.
,
Misono
,
M.
, and
Yoneda
,
Y.
, “
Effects of Dispersion in Carbon Monoxide Adsorption and Carbon Monoxide Hydrogenation over Alumina-Supported Ruthenium Catalysts
,”
Bull. Chem. Soc. Japan
, Vol.
57
, No.
4
,
1984
, pp. 938–943.
81.
Abrevaya
,
H.
,
Cohn
,
M. J.
,
Targos
,
W. M.
, and
Robota
,
H. J.
, “
Structure Sensitive Reactions over Supported Ruthenium Catalysts during Fischer-Tropsch Synthesis
,”
Catal. Lett.
, Vol.
7
, Nos.
1–4
,
1990
, pp. 183–196.
82.
Welker
,
C. A.
, “
Ruthenium Based Fischer-Tropsch Synthesis on Crystallites and Clusters of Different Sizes
,” Ph.D. diss.,
University of Cape Town
, South Africa, August
2007
.
83.
Swabb
,
L. E.
, Jr.
, “
Liquid Fuels from Coal: From R&D to an Industry
,”
Science
, Vol.
199
, No.
4329
,
1978
, pp. 619–622.
84.
Tan
,
E. C. D.
,
Talmadge
,
M.
,
Dutta
,
A.
,
Hensley
,
J.
,
Schaidle
,
J.
,
Biddy
,
M.
,
Humbird
,
D.
,
Snowden-Swan
,
L. J.
,
Ross
,
J.
,
Sexton
,
D.
,
Yap
,
R.
, and
Lukas
,
J.
, “
Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock through Methanol/Dimethyl Ether Intermediates
,” Technical Report, March
2015
,
85.
Maitlis
,
P. M.
, and
de Klerk
,
A.
,
Greener Fischer-Tropsch Processes for Fuels and Feedstocks
,
Wiley-VCH
,
Weinheim, Germany
,
2013
, p. 40.
86.
Huber
,
G. W.
,
Iborra
,
S.
, and
Corma
,
A.
, “
Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysis and Engineering
”,
Chem. Rev.
, Vol.
106
, No.
9
,
2006
, pp. 4044–4098.
87.
Miranowski
,
J.
,
Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts
,
The National Academies Press
,
2009
.
88.
Future Biomass-Based Transport Fuels: Summary and Conclusions from the IEA Bioenergy ExCo67 Workshop
,
Chum
H. L.
,
Overend
R. P.
, “
Biomass and Renewable Fuels
,”
Fuel Proc. Technol.
, Vol.
71
, Nos.
1–3
,
2001
, pp. 187–195.
89.
Hamelinck
,
C. N.
,
Faaij
,
A. P. C.
,
den Uil
,
H.
, and
Boerrigter
,
H.
, “
Production of FT Transportation Fuels from Biomass; Technical Options, Process Analysis and Optimization, and Development Potential
,”
Energy
, Vol.
29
, No.
11
,
2004
, pp. 1743–1771.
90.
Baliban
,
R. C.
,
Elia
,
J. A.
,
Floudas
,
C. A.
,
Xiao
,
X.
,
Zhang
,
Z.
,
Li
,
J.
,
Cao
,
H.
,
Ma
,
J.
,
Qiao
,
Y.
, and
Hu
,
X.
, “
Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization
,”
Ind. Eng. Chem. Res.
, Vol.
52
, No.
33
,
2013
, pp. 11436–11450.
91.
Elia
,
J. A.
,
Baliban
,
R. C.
,
Xiao
,
X.
, and
Flouday
,
C. A.
, “
Optimal Energy Supply Network Determination and Life Cycle Analysis for Hybrid Coal, Biomass and Natural Gas to Liquid (CBGTL) Plants Using Carbon-Based Hydrogen Production
,”
Computers Chem. Eng.
, Vol.
35
, No.
8
,
2011
, pp. 1399–1430.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal