Skip to Main Content
Skip Nav Destination
ASTM Manuals
Exploration and Production of Petroleum and Natural Gas
By
M. R. Riazi
M. R. Riazi
Editor
1
Chair of chemical engineering at Kuwait University
?
KW
Search for other works by this author on:
ISBN:
978-0-8031-7068-1
No. of Pages:
751
Publisher:
ASTM International
Publication date:
2016

This chapter introduces the basic concepts of petroleum geomechanics, many of the basic parameters needed for making geomechanical assessments, and some of the common ways they are obtained in the lab or in the field. It is written by practicing geomechanicists specifically for the nongeomechanicists who are working in other upstream petroleum subsurface disciplines. Geomechanics has become a prominent discipline over the past two decades, driven by increasingly complex development scenarios and required risk mitigation in the upstream petroleum business. Examples include (but are not limited to) the following: offshore deepwater drilling and development, including depleted drilling needs and high-pressure water flood management; optimizing unconventional resource development, such as oil sands and shale gas; high-temperature thermal recovery processes; and cap rock integrity and fault activation associated with primary, secondary, or enhanced recovery and fluid disposal or sequestration operations. Many nonspecialists have to deal knowingly or not with significant geomechanical impacts, problems, and risks. This section is written mainly for these professionals. The first part presents the concepts of material deformation, strain, and stress and discusses the basic parameters of elasticity, including rudimentary porous and thermal-related parameters. Only a minimal amount of mathematical development is provided, enough to understand the basic concepts, with references provided to sources in which detailed mathematical formulations can be found. The inelastic nature of most porous materials is identified, along with the basics of material failure. The remainder of the chapter focuses on the geomechanical characterization of materials, including the common methods for determining the geomechanical parameters via laboratory and field measurements and observations. Finally, geomechanical field surveillance technologies are discussed, with illustrative references provided. This chapter provides an essential base that should help the reader understand the geomechanical aspects important to the upstream petroleum industry.

1.
Lambe
,
T. W.
and
Whitman
,
R. V.
,
Soil Mechanics
,
Wiley & Sons
,
New York, NY
,
1969
.
2.
Charlez
,
Ph. A.
,
Rock Mechanics: Vol. 1 Theoretical Fundamentals
, 1st ed.,
Editions Technip
,
Paris, France
,
1991
.
3.
Jaeger
,
J. C.
,
Cook
,
N. G. W.
, and
Zimmerman
,
R. W.
,
Fundamentals of Rock Mechanics
, 4th ed.,
Malden, MA
,
Blackwell Publishing Ltd
,
2007
.
4.
Charlez
,
Ph. A.
,
Rock Mechanics: Vol. 2 Petroleum Applications
, 1st ed.,
Editions Technip
,
Paris, France
,
1997
.
5.
Fjaer
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
,
Risnes
,
R.
, and
Horsrud
,
P.
,
Petroleum Related Rock Mechanics
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
,
2008
.
6.
Zoback
,
M. D.
,
Reservoir Geomechanics
,
Cambridge University Press
,
New York, NY
,
2007
.
7.
Gurtin
,
M. E.
,
An Introduction to Continuum Mechanics
,
Academic Press
,
New York, NY
,
1981
.
8.
Barber
,
J. R.
,
Elasticity (Solid Mechanics and Its Applications)
,
Springer
,
New York, NY
,
2010
.
9.
Sayers
,
C. M.
, “
Simplified Anisotropy Parameters for Transversely Isotropic Sedimentary Rocks
,”
Geophysics
, Vol. 60,
1995
, pp. 1933–1935.
10.
Voltolini
,
M.
,
Wenk
,
H.-R.
,
Mondol
,
N. H.
,
Bjørlykke
,
K.
, and
Jahren
,
J.
, “
Anisotropy of Experimentally Compressed Kaolinite-Illite-Quartz Mixtures
,”
Geophysics
, Vol.
74
, No.
1
,
2009
, pp. D13–D23.
11.
Sayers
,
C. M.
and
Kachanov
,
M.
, “
Microcrack-Induced Elastic Wave Anisotropy in Brittle Rocks
,”
J. Geophys. Res
., Vol. 100,
1995
, pp. 4149–4156.
12.
Terzaghi
,
K.
, “
Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen
,”
Sitz. Akad. Wissen.
,
Wien Math. Naturwiss. Kl.
, Abt. IIa, 132,
1923
, pp. 105–124.
13.
Biot
,
M. A.
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
, Vol. 12,
1941
, pp. 155–164.
14.
Biot
,
M. A.
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
, Vol. 26,
1955
, pp. 182–185.
15.
Rice
,
J. R.
and
Cleary
,
M. P.
, “
Some Basic Stress-Diffusion Solutions for Fluid Saturated Elastic Porous Media with Compressible Constituents
,”
Rev. Geophys. Space Phys.
, Vol. 14,
1976
, pp. 227–241.
16.
Detournay
,
E.
and
Cheng
,
A. H.-D.
, “
Fundamentals of Poroelasticity
” in
Comprehensive Rock Engineering
, J. A. Hudson, Ed., Pergamon, Oxford, England,
1993
, pp. 113–171.
17.
Cheng
,
A. H.-D.
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
, Vol.
34
, No.
2
,
1997
, pp. 199–205.
18.
Amadei
,
B.
,
Savage
,
W. Z.
, and
Swolfs
,
H. S.
, “
Gravitational Stresses in Anisotropic Rock Masses
,”
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,
Vol.
24
, No.
1
,
1987
, pp. 5–14.
19.
Ojala
,
I. O.
and
Fjaer
,
E.
, “
The Effective Stress Coefficient in Porous Sandstone
,” ARMA-07-101, presented at the
First Canada–U.S. Rock Mechanics Symposium,
Vancouver, Canada, May
27–31,
2007
.
20.
Zoback
,
M. D.
and
Byerlee
,
J. D.
, “
Permeability and Effective Stress
,”
AAPG Bulletin
, Vol. 59,
1975
, pp. 154–158.
21.
Cornet
,
F.
and
Fairhurst
,
C.
, “
Influence of Pore Pressure on the Deformation Behavior of Saturated Rocks
,” in
Proceedings of 3rd Congress ISRM
, Denver, CO;
National Academy of Sciences
,
Washington, DC
,
1974
.
22.
Rice
,
J.
, “
Pore Pressure Effects in Inelastic Constitutive Formations for Fissured Rock Masses
,” in
Advances in Civil Engineering Through Engineering Mechanics
,
ASCE
,
New York, NY
,
1977
, pp. 360–363.
23.
Detournay
,
E.
and
Cheng
,
A. H.-D.
, “
Poroelastic Response of a Borehole in a Non-hydrostatic Stress Field
,”
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.
, Vol.
25
, No.
3
,
1988
, pp. 171–182.
24.
Skempton
,
A. W.
, “
The Pore Pressure Coefficients A and B
,”
Geotechnique
, Vol.
4
, No.
4
,
1954
, pp. 143–147.
25.
Loret
,
B.
,
Rizzi
,
E.
, and
Zerfa
,
Z.
, “
Relations Between Drained and Undrained Moduli in Anisotropic Poroelasticity
,”
J. Mech. Phys. Solids
, Vol. 49,
2001
, pp. 2593–2619.
26.
Carmichael
,
R. S.
,
Practical Handbook of Physical Properties of Rocks and Minerals
,
CRC Press
,
Boco Raton, FL
,
1988
.
27.
Brodsky
,
N. S.
,
Riggins
,
M.
, and
Connolly
,
J.
, “
Thermal Expansion, Thermal Conductivity, and Heat Capacity Measurements at Yucca Mountain, Nevada
,”
Int. J. Rock Mech. & Min. Sci.
, Vol. 34,
1997
, pp. 3–4, paper no. 040.
28.
Gilliam
,
T. M.
and
Morgan
,
I. L.
, “
Shale: Measurement of Thermal Properties
,” ORNL/TM-10499, Oak Ridge National Laboratory,
1987
.
29.
Eseme
,
E.
,
Urai
,
J. L.
,
Krooss
,
B. M.
, and
Littke
,
R.
, “
Review of Mechanical Properties of Oil Shales: Implications for Exploitation and Basin Modelling
,”
Oil Shale
, Vol.
24
, No.
2
,
2007
, pp. 159–174.
30.
Geilikman
,
M. B.
and
Wong
,
S.-W.
, “
Open-System Geomechanics of Rocks with Variable Solid Mass
,” ARMA 12-395,
Proceedings of 46th U.S. Rock Mechanics/Geomechanics Symposium
, Chicago, IL, June 24–27,
2012
.
31.
von Karman
,
T.
, “
Festigkeitsversuche unter allseitigem Druck
,”
Zeit. Ver. dt. Ing.,
Vol. 55,
1911
, pp. 1749–1757.
32.
Chen
,
W. F.
and
Baladi
,
G. Y.
, “
Elastic-Plastic Constitutive Modeling of Soils
,” Chap. 2, in
Developments in Geotechnical Engineering
, Vol. 38,
Elsevier
,
Amsterdam, The Netherlands
,
1985
, pp. 23–64.
33.
Jing
,
L.
and
Stephansson
,
O.
, “
Constitutive Models of Rock Fractures and Rock Masses–The Basics
,” Chap. 3, in
Developments in Geotechnical Engineering
, Vol. 85,
Elsevier
,
Amsterdam, The Netherlands
,
2007
, pp. 47–109.
34.
Berest
,
P.
,
Ghoreychi
,
M.
,
Fauveau
,
M.
, and
Lebitoux
,
P.
, “
Mechanisms of Creep in Gas Storage Caverns. Effect of Gravity Forces
,” ARMA 86-0789, presented at the
27th U.S. Symposium on Rock Mechanics,
Tuscaloosa, AL,
1986
.
35.
Preece
,
D. S.
, “
Borehole Creep Closure Measurements and Numerical Calculations at the Big Hill, Texas SPR Storage Site
,”
Proceedings of the 6th ISRM Congress
, Montreal, Canada,
1987
.
36.
Zhang
,
J.
,
Standifird
,
W. B.
, and
Lenamond
,
C.
, “
Casing Ultradeep, Ultralong Salt Sections in Deep Water: A Case Study for Failure Diagnosis and Risk Mitigation in Record-Depth Well
,” SPE 114273, presented at
SPE ATCE,
Denver, CO, September 21–24,
2008
.
37.
Ravi
,
K.
,
Barhate
,
Y. R.
,
Jandhyala
,
S. R. K.
,
Fonseca
,
C. E.
, and
Anjos
,
J.
, “
Cement Sheath Integrity in Fast Creeping Salts: Effect of Well Operations
,” SPE 166622, presented at
SPE Offshore Europe Oil & Gas Conference,
Aberdeen, England, September 3–6,
2013
.
38.
Carter
,
N. L.
and
Hansen
,
F. D.
, “
Creep of Rocksalt
,”
Tectonophysics
, Vol.
92
, No.
4
, March
1983
, pp. 275–333.
39.
Dudley
,
J. W.
,
Myers
,
M. T.
,
Shew
,
R. D.
, and
Arasteh
,
M. M.
, “
Measuring Compaction and Compressibilities in Unconsolidated Reservoir Materials via Time-Scaling Creep
,” SPE 51324,
SPE Res. Eval. & Eng
., Vol.
1
, No.
5
,
1998
, pp. 430–437.
40.
Ostermeier
,
R. M.
, “
Deepwater Gulf of Mexico Turbidites– Compaction Effects on Porosity and Permeability
,” SPE 26468,
SPE Formation Evaluation,
Vol.
10
, No.
2
, June
1995
, pp. 79–85.
41.
Chu
,
M,-S.
and
Chang
,
N.-Y.
, “
Uniaxial Creep of Oil Shale under Elevated Temperatures
,” ARMA 80-0207,
Proceedings of 21st U.S. Rock Mechanics Symposium
, Rolla, MO, May 27–30,
1980
.
42.
Remvik
,
F.
, “
Shale-Fluid Interaction and Its Effect on Creep
,”
Proceedings of the 8th International Society of Rock Mechanics Congress,
Tokyo, Japan, September 25–29,
1995
.
43.
Chang
,
C.
and
Zoback
,
M. D.
, “
Creep in Unconsolidated Shale and Its Implication on Rock Physical Properties
,” ARMA 08-130,
Proceedings of 42nd U.S. Rock Mechanics Symposium
, San Francisco, CA, June 29–July 2,
2008
.
44.
Dusseault
,
M. B.
,
Geilikman
,
M. B.
, and
Spanos
,
T. J. T.
, “
Heavy Oil Production from Unconsolidated SAGD
,” SPE 48890, presented at
SPE International Conference,
Beijing, China, November 2–6,
1998
.
45.
Geilikman
,
M. B.
and
Dusseault
,
M. B.
, “
Fluid Rate Enhancement from Massive Sand Production in Heavy-Oil Reservoirs
,”
J. Petro. Sci. Eng.,
Vol. 17,
1997
, pp. 5–18.
46.
Lade
,
P. V.
, “
Modeling Failure in Cross-Anisotropic Frictional Materials
,”
Int. J. Solids & Structures,
Vol. 44,
2007
, pp. 5146–5162.
47.
Gao
,
Z.
,
Zhao
,
J.
, and
Yao
,
Y.
, “
A Generalized Anisotropic Failure Criterion for Geomaterials
,”
Int. J. Solids Structures,
Vol.
47
, No.
22–23
, November
2010
, pp. 3166–3185.
48.
Maleki
,
S.
,
Gholami
,
R.
,
Rasouli
,
V.
,
Moradzadeh
,
A.
,
Riabi
,
R. G.
and
Sadaghzadeh
,
F.
, “
Comparison of Different Failure Criteria in Prediction of Safe Mud Weigh Window in Drilling Practice
,”
Earth-Science Reviews
, Vol. 136, September
2014
, pp. 36–58.
49.
de Rouffignac
,
E. P.
,
Bondor
,
P. L.
, and
Karanikas
,
J. M.
, “
Subsidence and Well Failure in the South Belridge Diatomite Field
,” SPE 29626, presented at the
SPE Western Regional Conference,
Bakersfield, CA, March 6–10,
1995
.
50.
Dudley
,
J. W.
,
van der Linden
,
A.
, and
Mueller
,
G. F.
, “
Geomechanical Modelling of a Pore Collapsing Carbonate: Compaction and Subsidence of a Field in Oman
,” IPTC 10680,
Proceedings of the International Petroleum Technology Conference
, Doha, Qatar, November 21–23,
2005
.
51.
Dudley
,
J. W.
,
van der Linden
,
A.
, and
Mah
,
K. G.
, “
Predicting Accelerating Subsidence Above the Highly Compacting Luconia Carbonate Reservoirs, Offshore Sarawak Malaysia
,” SPE 109190,
SPE Res. Eval. & Eng
., Vol.
12
, No.
1
,
2009
, pp. 104–115.
52.
Johnson
,
J. P.
,
Rhett
,
D. W.
, and
Siemers
,
W. T.
, “
Rock Mechanics of the Ekofisk Reservoir in the Evaluation of Subsidence
,” OTC 5621, presented at the
Offshore Technology Conference,
Houston, TX, May 2–5,
2008
,
53.
Maury
,
V.
,
Piau
,
J.-M.
, and
Halle
,
G.
, “
Subsidence Induced by Water Injection in Water Sensitive Reservoir Rocks: The Example of Ekofisk
,” SPE 36890, presented at the
SPE European Petroleum Conference,
Milan, Italy, October 22–24,
1996
.
54.
Perkins
,
T. K.
and
Krech
,
W. W.
, “
The Energy Balance Concept of Hydraulic Fracturing
,” SPE 1901,
SPE Transactions
, Vol. 243, March,
1968
, pp. 1–12.
55.
Shlyapobersky
,
J.
, “
Energy Analysis of Hydraulic Fracturing
,” presented at the
26th U.S. Symposium on Rock Mechanics,
South Dakota School of Mines and Technology, Rapid City, SD, June 26–28,
1985
.
56.
Griffith
,
A. A.
, “
The Phenomena of Rupture and Flow in Solids
,”
Philosophical Transactions of the Royal Society
, A221,
1921
, pp. 163–198.
57.
Griffith
,
A. A.
, “
Theory of Rupture
,”
Proceedings, First International Congress for Applied Mechanics
, C. B. Biezeno & J. M. Burgers, Eds., Waltman, Delft, The Netherlands,
1925
, pp. 55–63.
58.
Chudnovsky
,
A.
, “
Slow Crack Growth, Its Modeling and Crack-Layer Approach: A Review
,”
Int. J. Eng. Sci.,
Vol. 83, October,
2014
, pp. 6–41.
59.
Shlyapobersky
,
J.
,
Walhaug
,
W. W.
,
Sheffield
,
R. E.
, and
Huckabee
,
P. T.
, “
Field Determination of Fracturing Parameters for Overpressure Calibrated Design of Hydraulic Fracturing
,” SPE 18195, presented at the
63th SPE Annual Technical Conference and Exhibition,
Houston, TX, October 2–5,
1988
.
60.
Simmons
,
G.
and
Brace
,
W. F.
, “
Comparison of Static and Dynamic Measurements of Compressibility of Rocks
,”
J. Geophysical Res.
, Vol. 70,
1965
, pp. 5649–5656.
61.
Fjaer
,
E.
, “
Static and Dynamic Moduli of Weak Sandstones
,”
Proceedings of the 37th U.S. Rock Mechanics Symposium
, Vail, CO, June 6–9,
1999
.
62.
The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006
,
Ulusay
R.
, and
Hudson
J. A.
, Eds.,
International Society for Rock Mechanics
,
Lisbon, Portugal
,
2007
.
63.
ASTM D4543-08,
Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances
,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org
64.
Richards
,
T.
,
Detournay
,
E.
Drescher
,
A.
,
Nicodeme
,
P.
, and
Fourmaintraux
,
D.
, “
The Scratch Test as a Means to Measure Strength of Sedimentary Rocks
,” SPE 47196, presented at the
SPE/ISRM Eurock ‘98 Symposium,
Trondheim, Norway, July 8–10,
1998
.
65.
ASTM D4535-08,
Standard Test Methods for Measurement of Thermal Expansion of Rock Using Dilatometer
,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org
66.
ASTM D3967-08,
Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens,
ASTM International
,
West Conshohocken, PA
,
2008
, www.astm.org
67.
Nolte
,
K. G.
, “
Determination of Fracture Parameters from Fracturing Pressure Decline
,” SPE 8341, presented at
54th SPE Annual Technical Conference and Exhibition,
Las Vegas, NV, September 23–26,
1979
.
68.
Barree
,
R. D.
,
Barree
,
V. L.
, and
Craig
,
D. P.
, “
Holistic Fracture Diagnostics: Consistent Interpretation of Prefrac Injection Tests Using Multiple Analysis Methods
,”
SPE Prod. & Oper.,
Vol.
24
, No.
3
,
2009
, 396–406.
69.
Plona
,
T. J.
,
Winkler
,
K.
,
D'Angelo
,
R.
,
Sinha
,
B. K.
,
Papanastasiou
,
P.
, and
Cook
,
J. M.
, “
Acoustic Detection of Stress-Induced Effects Around a Borehole
,”
Int. J. Rock. Mech. & Min. Sci
, Vol.
34
, No.
3–4
,
1997
, p. 420.
70.
Sinha
,
B. K.
,
Bratton
,
T. R.
,
Cryer
,
J. V.
,
Nieting
,
S.
,
Ugueto
,
G. A.
,
Bakulin
,
A.
, and
Hauser
,
M. R.
, “
Estimation of Near-Wellbore Alteration and Formation Stress Parameters from Borehole Sonic Data
,” SPE 95841,
SPE Res. Eval. & Eng
., Vol.
11
, No.
3
,
2008
, pp. 478–486.
71.
Bieniawski
,
Z. T.
, “
Rock Mass Classification in Rock Engineering
,”
Proceedings of the Exploration for Rock Engineering,
Cape Town/ Rotterdam Balkema,
Bieniawski
Z. T.
, Ed., Vol. 1, November
1976
, pp. 97–106.
72.
Marinos
,
P.
and
Hoek
,
E.
, “
GSI–A Geologically Friendly Tool for Rock Mass Strength Estimation
,”
Proceedings GeoEng2000 Conference
, Melbourne, Australia,
2000
, pp. 1422–1442.
73.
van Oort
,
E.
,
Nicholson
,
J.
, and
D'Agostino
,
J.
, “
Integrated Borehole Stability Studies: Key to Drilling at the Technical Limit and Trouble Cost Reduction
,” SPE 67763, presented at
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, February 27–March 1,
2001
.
74.
Schoonbeek
,
J. B.
, “
Land Subsidence as a Result of Natural Gas Extraction in the Province of Groningen
,” SPE 5751, presented at
SPE European Meeting,
Amsterdam, The Netherlands, April 8–9,
1976
.
75.
Colazas
,
X. C.
and
Olson
,
L. J.
, “
Subsidence Monitoring Methods and Benchmark Elevation Response to Water Injection, Wilmington Oil Field, Long Beach, California
,”
Proceedings of 1982 Forum on Subsidence due to Fluid Withdrawals
,
Donaldson
E. C.
and
van Domselaar
H. R.
, Eds., Checotah, OK, November 14–17,
1982
, pp. 121–132.
76.
Fourmaintraux
,
D. M.
,
Flouzat
,
M.
,
Bouteca
,
M. J.
, and
Kasser
,
M.
, “
Improved Subsidence Monitoring Methods
,” presented at
SPE/ ISRM Rock Mech. in Petro. Eng. Conf.,
Delft, The Netherlands, August 29–31,
1994
.
77.
Biegert
,
E. K.
,
Berry
,
J. L.
, and
Oakley
,
S. D.
, “
Oil Field Subsidence Monitoring Using Spaceborne Interferometric SAR–A Belridge 4-D Case History
,”
Proceedings Annual Meeting of the American Association of Petroleum Geologists,
Dallas, TX, April 6–9,
1997
.
78.
Jackson
,
L. A.
,
Rubin
,
T. D.
,
Evans
,
M. E.
,
Korenaga
,
G. L.
,
Smart
,
D. R.
,
Samuels
,
Pa
, and
Hanrahan
,
F. E.
, “
Remote Sensing for Environmental Baselining in the Petroleum Industry
,” SPE 74164, presented at
SPE International Conference of Health, Safety and Environment in Oil & Gas Exploration & Production,
Kuala Lumpur, Malaysia, March 20–22,
2002
.
79.
Liu
,
B.
,
Luo
,
Y.
,
Zhang
,
J. F.
,
Gong
,
L. X.
, and
Jiang
,
W. L.
, “
PS InSAR Time-Series Analysis for Monitoring Ground Subsidence
,” in
Rock Stress and Earthquakes
, Xie, Ed., ISBN 978-0-415-60165-8.
80.
Hu
,
J.
,
Li
,
Z. W.
,
Ding
,
X. L.
,
Zhu
,
J. J.
,
Zhang
,
L.
, and
Sun
,
Q.
, “
Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review
,”
Earth-Sci. Rev.
, Vol. 133,
2014
, pp. 1–17.
81.
Collins
,
J.
, “
Measuring Platform Subsidence Using GPS Satellite Surveying
,” OTC 5191, presented at
Offshore Technology Conference,
Houston, TX, May 5–8,
1986
.
82.
Mes
,
M. J.
, “
High-Precision, Low-Cost Bathymetry Surveys
,” OTC 7377, presented at
Offshore Technology Conference,
Houston, TX, May 25,
1994
.
83.
Mes
,
M. J.
, “
Measuring Offshore Subsidence with Seabed Pressure Gauges
,” SPE 18182, presented at
SPE ATCE,
Houston, TX, October 2–5,
1998
.
84.
Stenvold
,
T.
,
Eiken
,
O.
,
Zumberge
,
M. A.
,
Sasagawa
,
G. S.
, and
Nooner
,
S. L.
, “
High-Precision Relative Depth and Subsidence Mapping From Seafloor Water-Pressure Measurements
,” SPE 97752,
SPE Journal,
Vol.
11
, No.
3
, September
2006
, pp. 380–389.
85.
Allen
,
D. R.
, “
Collar and Radioactive Bullet Logging for Subsidence Monitoring
,” paper presented at
SPWLA 10th Annual Logging Symposium,
May 25–28,
1969
.
86.
de Loos
,
J. M.
, “
In-Situ Compaction Measurements in Groningen Observation Wells
,”
Verhandelingen Kon. Ned. Geol. Mijnbouwk. Gen.
, Vol. 28,
1973
, p. 79–104.
87.
Mobach
,
E.
and
Gussinklo
,
H. J.
, “
In-Situ Reservoir Compaction Monitoring in the Groningen Field
,” SPE 28094, presented at
SPE/ ISRM Rock Mechanics in Petroleum Engineering Conference,
Delft, The Netherlands, August 29–31,
1994
.
88.
van der Horst.
,
J.
,
Rambow
,
F.
,
Frisch
,
G.
,
Quirein
,
J.
, and
Fox
,
P.
, “
Formation Compaction Surveillance in Deepwater Gulf of Mexico: Applications, Experiences and Best Practices
,” paper presented at the
SPWLA 46th Annual Logging Symposium,
New Orleans, LA, June 26–29,
2005
.
89.
Gu
,
F.
,
Chan
,
M.
, and
Fryk
,
R.
, “
Geomechanical Data Acquisition, Monitoring and Applications in SAGD
,” PETSOC-2009-177, Petroleum Society of Canada,
2009
.
90.
Collins
,
P. M.
, “
Design of the Monitoring Program for AOSTRA's Underground Test Facility, Phase B Pilot
,” PETSOC-94-03-06, Petroleum Society of Canada,
1994
.
91.
Koelman
,
J. M. V. A.
,
Lopez
,
J. L.
, and
Potters
,
J. H. H. M.
, “
Fiber Optic Technology for Reservoir Surveillance
,” IPTC 14629, presented at
IPTC,
Bangkok, Thailand, February 7–9,
2012
.
92.
Appel
,
M.
,
Dria
,
D.
,
Freeman
,
J.
,
Rambow
,
F.
,
Shuck
,
M.
,
Childers
,
B.
,
Poland
,
S.
, and
Dominique
,
T.
, “
Real-Time Fiber-Optic Casing Imager
,” SPE 109941, presented at
SPE ATCE,
Anaheim, CA, November 11–14,
2007
.
93.
Du
,
J.
,
Brissenden
,
S. J.
,
McGillivray
,
P.
,
Bourne
,
S.
,
Hofstra
,
P.
,
Davis
,
E. J.
,
Roadarmel
,
W. H.
,
Wolhart
,
S. L.
,
Marsic
,
S.
,
Gusek
,
R.
, and
Wright
,
C. A.
, “
Mapping Reservoir Volume Changes during Cyclic Steam Stimulation Using Tiltmeter-Based Surface-Deformation Measurements
,” SPE 97848, presented at
SPE International Thermal Operations and Heavy Oil Symposium,
Calgary, AB, November 1–3,
2005
.
94.
Hatchell
,
P. J.
and
Bourne
,
S. J.
, “
Measuring Reservoir Compaction Using Time-Lapse Timeshifts
,” SEG-2005-2500, SEG Annual Conference, Houston, TX,
2005
.
95.
Hatchell
,
P. J
,
Jorgensen
,
O.
,
Gommesen
,
L.
, and
Stammeijer
,
J.
, “
Monitoring Reservoir Compaction from Subsidence and Time-Lapse Timeshifts in the Dan Field
,” SEG-2007-2867, SEG Annual Conference, San Antonio, TX,
2007
.
96.
Wright
,
C. A.
,
Davis
,
E. J.
,
Golich
,
G. M.
,
Ward
,
J. F.
,
Demetrius
,
S. L.
,
Minner
W. A.
, and
Weijers
,
L.
, “
Downhole Tiltmeter Fracture Mapping: Finally Measuring Hydraulic Fracture Dimensions
,” SPE 46194,
SPE Western Regional Conference,
Bakersfield, CA, May 10–13,
1998
.
97.
Wright
,
C. A.
,
Davis
,
E. J.
,
Minner
,
W. A.
,
Ward
,
J. F.
,
Weijers
,
L.
,
Schell
,
E. J.
, and
Hunter
,
S. P.
, “
Downhole Tiltmeter Fracture Mapping: Finally Measuring Hydraulic Fracture Dimensions
,” SPE 39919, presented at the
SPE Rocky Mountain Regional Symposium,
Denver, CO, April 5–8,
1998
.
98.
Lecampion
,
B.
,
Jeffrey
,
R.
, and
Detournay
,
E.
, “
Real-Time Bayesian Inversion of Hydraulic Fracturing Treatment Efficiency from Tiltmeter Measurements
,” SPE 90636,
SPE ATCE,
Houston, TX, September 26–29,
2004
.
99.
Vinegar
,
H. J.
,
Wills
,
P. B.
,
DeMartini
,
D. C.
,
Shlyapobersky
,
J.
,
Deeg
,
W. F. J.
,
Adair
,
R. G.
,
Woerpel
,
J. C.
,
Fix
,
J. E.
, and
Sorrells
,
G. G.
, “
Active and Passive Seismic Imaging of a Hydraulic Fracture in Diatomite
,” SPE-22756,
SPE J. Petro. Tech.,
January
1992
.
100.
Warpinski
,
N. R.
,
Branagan
,
P. T.
,
Peterson
,
R. E.
,
Fix
,
J. E.
,
Uhl
,
J. E.
,
Engler
,
B. P.
, and
Wilmer
,
R.
, “
Microseismic and Deformation Imaging of Hydraulic Fracture Growth and Geometry in the C Sand Interval, GRI/DOE M-Site Project
,” SPE 38573, presented at
SPE ATCE,
San Antonio, TX, October 5–8,
1997
.
101.
Molenaar
,
M. M.
,
Hill
,
D.
,
Webster
,
P.
,
Fidan
,
E.
, and
Birch
,
B.
, “
First Downhole Application of Distributed Acoustic Sensing (DAS) for Hydraulic Fracturing Monitoring and Diagnostics
,” SPE 140561, presented at
SPE Hydraulic Fracture Technology Conference,
The Woodlands, TX, January 24–26,
2011
.
102.
Willis
,
G. B.
, “
Estimating Fracture Height From Gamma Ray Spectroscopy of Radioactive Tracers: A Case Study
,” SPE 21833, presented at
SPE Rocky Mountain Regional Meeting,
Denver, CO, April 15–17,
1991
.
103.
Nath
,
D. K.
,
Finley
,
D. B.
,
Kaura
,
J. D.
,
Krismartopo
,
B.
, and
Yudhiarto
,
W.
, “
Real-Time Fiber-Optic Distributed Temperature Sensing (DTS)-New Applications in the Oilfield
,” SPE 103069, presented at
SPE ATCE,
San Antonio, TX, September 24–27,
2006
.
104.
Sierra
,
J. R.
,
Kaura
,
J. D.
,
Gualtieri
,
D.
,
Glasbergen
,
G.
,
Sarker
,
D.
, and
Johnson
,
D.
, “
DTS Monitoring of Hydraulic Fracturing: Experiences and Lessons Learned
,” SPE 116182, presented at
SPE ATCE,
Denver, CO, September 21–24,
2008
.
105.
Desroches
,
J.
and
Kurkjian
,
A. L.
, “
Applications of Wireline Stress Measurements
,” SPE 58086,
SPE Res. Eval. & Eng.,
Vol.
2
, No.
5
,
1999
, pp. 451.
106.
Carnegie
,
A.
,
Thomas
,
M.
,
Efnik
,
M. S.
,
Hamawi
,
M.
,
Akbar
,
M.
, and
Burton
,
M.
, “
An Advanced Method of Determining Insitu Reservoir Stresses: Wireline Conveyed Micro-Fracturing
, SPE 78486, presented at
10th Annual Abu Dhabi International Petroleum Conference
, Abu Dhabi, UAE, October 13–16,
2002
.
107.
Kirsch
,
G.
, “
Die Theorie der Elastizitaet und die Beduerfnisse der Festigkeitslehre
,”
Veit. Ver. Deut. Ing.
, Vol. 42,
1898
, pp. 797–807.
108.
Molenaar
,
M. M.
,
Hatchell
,
P. J.
,
van den Beukel
,
A. C.
,
Jenvey
,
N. J.
,
Stammeijer
,
J. G. F.
,
van der Velde
,
J. J.
, and
de Haas
,
W. O.
, “
Applying Geo-Mechanics and 4D: ‘4D In-Situ Stress' as a Complementary Tool for Optimizing Field Management
,” ARMA 04-639, paper presented at the
Sixth
North American Rock Mechanics Symposium,
Houston, TX, June 5–9,
2004
.
109.
Kenter
,
C. J.
,
Van den Beukel
,
A. C.
,
Hatchell
,
P. J.
,
Maron
,
K. P.
,
Molenaar
,
M. M.
, and
Stammeijer
,
J. G. F.
, “
Geomechanics and 4D: Evaluation of Reservoir Characteristics from Timeshifts in the Overburden
,” ARMA 04-627, paper presented at the
Sixth
North American Rock Mechanics Symposium,
Houston, TX, June 5–9,
2004
.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal