Skip to Main Content
Skip Nav Destination
ASTM Manuals
Petroleum Refining and Natural Gas Processing
By
M. R. Riazi
M. R. Riazi
Editor
1
Professor
of Chemical Engineering at
Kuwait University
, and
consultant
and invited
speaker
to more than 50 oil companies and research institutions in Canada, the U.S., Europe, India, China, Malaysia, Australia, the Middle East and North Africa, including invited
speaker
to the
World Economic Forum
,
author/co-author
of more than 100 publications, including three books mainly in the areas of petroleum and chemical technology, founding and
Editor-in-Chief
of
IJOGC
and an
associate editor
of some other international journals, member of
AIChE
and the
Research Society of North America
Search for other works by this author on:
Semih Eser
Semih Eser
Editor
2
Professor
of Energy and Geo-Environmental Engineering at
Penn State University
, and teaches courses on petroleum refining and energy engineering at
John and Willie Department of Energy and Mineral Engineering
and directs the Carbon Materials Program at the
EMS Energy Institute
at
Penn
State
Search for other works by this author on:
Suresh S. Agrawal
Suresh S. Agrawal
Editor
3
Founder and president
of
Offsite Management Systems LLC
and a Bachelors Degree in Chemical Engineering from
Indian Institute of Technology (I.I.T.)
,
Mumbai,
IN
.
Search for other works by this author on:
José Luis Peña Díez
José Luis Peña Díez
Editor
4
Consultant
at the
Technology Center at Repsol
in
Madrid,
ES
, and
part-time associate professor
in chemical engineering at the
Rey Juan Carlos University
of
Madrid
, and
author
of forty technical articles and presentations at international conferences in the fields of petroleum fluids characterization, process engineering and control, and process simulation
Search for other works by this author on:
ISBN:
978-0-8031-7022-3
No. of Pages:
828
Publisher:
ASTM International
Publication date:
2013

Catalytic processes play the most significant role in petroleum refineries for changing the molecular architecture of the hydrocarbons to make high-performance fuels in high yields and removing the heteroatoms such as sulfur, nitrogen, and metals to produce environmentally acceptable fuels. Catalysts take part in carbon rejection (e.g., fluid catalytic cracking [FCC]) and hydrogen addition (e.g., hydrocracking) to convert the hydrocarbons in crude oils to desirable light and middle distillates and other chemicals. Catalysts constitute the heart of the catalytic processes, and there have been very significant developments from the days of using natural clays as catalysts for catalytic cracking to designing and producing catalysts with precise control of their structure, composition, and properties for FCC. This chapter introduces new advances in catalysts for selected processes such as FCC, hydrotreatment of FCC gasoline (catalytic cracked gasoline), hydroprocessing of vacuum gas oil, alkylation, processing of heavy bottoms of crude oils, hydrogen production, and the roles of catalyst supports. The chapter follows an outline parallel to the advanced processes discussed in Chapter 7 to focus on the catalysts used in these processes.

1.
Venuto
,
P.
, and
Habib
,
E.
,
Fluid Catalytic Cracking with Zeolite Catalysts
,
Marcel Dekker
,
Inc., New York
,
1979
, p. 30.
2.
Flank
,
W.H.
,
Abraham
,
M.A.
,
Matthews
,
M.A.
, and
Fletcher
,
R.
,
Innovations in Industrial and Engineering Chemistry
,
American Chemical Society
,
Washington, DC
,
2008
, pp. 231, 237.
3.
Flank
,
W.H.
,
Abraham
,
M.A.
,
Matthews
,
M.A.
, and
Fletcher
,
R.
,
Innovations in Industrial and Engineering Chemistry
,
American Chemical Society
,
Washington, DC
,
2008
, p. 247.
4.
Oil Sands Industry Update
,
Alberta Economic Development
,
Edmonton, Alberta, Canada
, June
2006
.
5.
Oil Sands Technology Roadmap—Unlocking the Potential
,
Alberta Chamber of Resources
,
Edmonton, Alberta, Canada, January 30
,
2004
.
6.
Kelly
,
S.
, and
Wise
,
T.
, “
Markets for Canadian Oil Sands Products
,” paper presented at the
National Petrochemical Refiners Association Annual Meeting
,
Salt Lake City, UT
, March 19,
2006
.
7.
Butler
,
E.
,
Groves
,
K.
,
Hymanyk
,
J.
,
Malholland
,
M.
,
Clark
,
P.A.
, and
Aru
,
G.
, “
Reducing Refinery SOx Emission
,”
Petrol. Technol. Quart.
, Q3,
2006
.
8.
Mulholland
,
M.
,
Aru
,
G.
, and
Clark
,
P.
, “
SOx 2
,”
Hydrocarbon Eng.
, Vol.
9
,
2004
.
9.
Radcliffe
,
C.
, “
Reducing FCC Unit NOx Emission
,”
Petrol. Technol. Quart.
,
2008
, http://www.eptq.com/view_edition.aspx?intContentID=21&intEID=68.
10.
Evans
,
M.
,
Fletcher
,
R.
,
Lakhani
,
H.
,
Sawyer
,
J.
, and
Schuttenburg
,
K.
, “
An Alternative to FCC Fluegas Scrubbers
,” paper presented at the
National Petrochemical Refiners Association Annual Meeting
,
San Antonio, TX
, March 22–24,
2009
, Paper AM-09-38.
11.
Bouwens
,
S.M.A.M.
,
Vissers
,
J.P.R.
,
Beer
,
V.H.J.
, and
Prins
,
R.J.
, “
Phosphorus Poisoning of Molybdenum Sulfide Hydrodesulfurization Catalysts Supported on Carbon and Alumina
,”
J. Catal.
, Vol.
112
,
1988
, pp. 401–410.
12.
Arteaga
,
A.
,
Fierro
,
J.L.G.
,
Grange
,
P.
, and
Delmon
,
B.
, “
CoMo HDS Catalysts: Simulated Deactivation and Regeneration. Role of Various Regeneration Parameters
,” in
Delmon
B.
and
Froment
G.F.
, Eds.,
Catalyst Deactivation 1987
,
London
,
Elsevier Science Publishers
,
1987
, p. 59.
13.
Okamoto
,
Y.
,
Tomioka
,
H.
,
Imanaka
,
T.
, and
Teranishi
,
S.
, “
Surface Structure and Catalytic Activity of Sulfided MoO3Al2O3 Catalysts: Hydrodesulfurization and Hydrogenation Activities
,”
J. Catal.
, Vol.
66
,
1980
, pp. 93–100.
14.
Satterfield
,
C.N.
, and
Roberts
,
G.W.
, “
Kinetics of Thiophene Hydrogenolysis on a Cobalt Molybdate Catalyst
,”
AIChE J.
, Vol.
14
,
1968
, pp. 159–164.
15.
Hagenbach
,
G.
,
Courty
,
Ph.
, and
Delmon
,
B.
, “
Catalytic Effect of Palladium on Hydrogen Reduction of Metal Oxides
,”
J. Catal.
, Vol.
23
,
1971
, pp. 295–300.
16.
Hatanaka
,
S.
,
Yamada
,
M.
, and
Sadakane
,
O.
, “
Hydrodesulfurization of Catalytic Cracked Gasoline. 2. The Difference between HDS Active Site and Olefin Hydrogenation Active Site
,”
Ind. Eng. Chem. Res.
, Vol.
36
,
1997
, pp. 5110–5117.
17.
Kasahara
,
S.
,
Koizumi
,
N.
,
Iwahashi
,
J.
, and
Yamada
,
M.
, “
Effects of Fe, Co, Ni on Hydrodesulfurization Activity of Sulfided Mo/Al2O3 (Part 1
,”
J. Japan Petrol. Inst.
, Vol.
38
,
1995
, pp. 345–352.
18.
Inamura
,
K.
, and
Prins
,
R.
,
Proceedings of the 2nd Tokyo Conference on Advanced Catalytic Science and Technology
, Aug. 21, Paper 70, 401 (
1994
).
19.
Hatanaka
,
S.
,
Sadakane
,
O.
, and
Okazaki
,
H.
, “
Hydrodesulfurization of Catalytic Cracked Gasoline
,”
J. Japan Petrol. Inst.
, Vol.
44
,
2001
, pp. 36–42.
20.
Sakamoto
,
N.
,
Ito
,
H.
,
Honma
,
T.
, and
Yamada
,
M.
,
Japan Petroleum Institute Conference
,
Hakodate
, D22, P185,
1992
.
21.
Hatanaka
,
S.
,
Yamada
,
M.
, and
Sadakane
,
O.
, “
Hydrodesulfurization of Catalytic Cracked Gasoline. 3. Selective Catalytic Cracked Gasoline Hydrodesulfurization on the Co-Mo/γ-Al2O3 Catalyst Modified by Coking Pretreatmen
,”
Ind. Eng. Chem. Res.
, Vol.
37
,
1998
, pp. 1748–1754.
22.
Mey
,
D.
,
Brunet
,
S.
,
Canaff
,
C.
,
Maugé
,
F.
,
Bouchy
,
C.
, and
Diehl
,
F.
, “
HDS of a Model FCC Gasoline over a Sulfided CoMo/Al2O3 Catalyst: Effect of the Addition of Potassiu
,”
J. Catal
, Vol.
227
,
2004
, pp. 436–447.
23.
Two-Stage Hydrodesulfurization Process
,” U.S. Patent 5,985,136,
1999
.
24.
Stanislaus
,
S.
,
Marafi
,
A.
, and
Rana
,
M.S.
, “
Recent Advances in the Science and Technology of Ultra Low Sulfur Diesel (ULSD) Production
,”
Catal. Today
, Vol.
153
,
2010
, pp. 1–68.
25.
Fujikawa
Takashi
,
Chem. Eng.
, Vol.
11
,
2003
, p. 37.
26.
Houalla
,
M.
 et al
,
Prepr. Amer. Chem. Soc. Div. Petrol. Chem.
, Vol.
22
,
1977
, p. 941.
27.
Ma
,
X.
,
Sakanishi
,
K.
, and
Mochida
,
I.
, “
Hydrodesulfurization Reactivities of Various Sulfur Compounds in Diesel Fuel
,”
Ind. Eng. Chem. Res.
, Vol.
33
,
1994
, pp. 218–222.
28.
Farag
,
H.
,
Whitehurst
,
D.D.
,
Sakanishi
,
K.
and
Mochida
,
I.
, “
Carbon versus Alumina As a Support for Co-Mo Catalysts Reactivity towards HDS of Dibenzothiophenes and Diesel Fuel
,”
Catal. Today
, Vol.
50
,
1999
, pp. 9–17.
29.
Evaluation of Reactivity for Ultra-Low Sulfur Gas Oil, PEC Report,
2001
.
30.
Development of Reduction Technology for Pollutants in Petroleum Refining, NEDO Report,
2004
.
31.
Topsøe
,
H.
and
Clausen
,
B.S.
, “
Importance of Co-Mo-S Type Structures in Hydrodesulfurization
,”
Catal. Rev. Sci. Eng.
, Vol.
26
,
1984
, pp. 395–420.
32.
Eijsbouts
,
S.
, and
Inoue
,
Y.
,
Stud. Surf. Catal.
, Vol.
92
,
1995
pp. 429.
33.
Dzwigaj
,
S.
,
Louis
,
C.
,
Breysse
,
M.
,
Cattenot
,
M.
,
Belliere
,
V.
,
Geantet
,
C.
,
Vrinat
,
M.
,
Blanchard
,
P.
,
Payen
,
E.
,
Inoue
,
S.
,
Kudo
,
H.
, and
Yoshimura
,
Y.
, “
New Generation of Titanium Dioxide Support for Hydrodesulfurization
,”
Appl. Catal. B
, Vol.
41
,
2003
, pp. 181–191.
34.
Inoue
,
S.
,
Muto
,
A.
,
Kudou
,
H.
, and
Ono
,
T.
, “
Preparation of Novel Titania Support by Applying the Multi-Gelation Method for Ultra-Deep HDS of Diesel Oil
,”
Appl. Catal. A
, Vol.
269
,
2004
, pp. 7–12.
35.
Rascona
,
I.
, et al
,
Albemarle's Catalyst Courier
, Vol.
50
, December,
2002
.
36.
Brevoord
,
E.
,
Albemarle's Catalyst Courier
, Vol.
43
, March
2001
.
38.
Dufresne
,
P.
, et al
,
Albemarle Catalyst Courier
, Vol.
38
, December,
1999
.
39.
Gerritsen
,
L.A.
,
Albemarle Catalyst Courier
, Vol.
41
, September,
2000
.
40.
Reid
,
T.
,
Albemarle's Catalyst Courier
, Vol.
49
, September,
2002
.
42.
Albemarle's Catalyst Courier
, Vol.
57
, Autumn
2004
.
43.
Brevoord
,
E.
, “
Next Step to Cleaner Diesel Fuels
,”
Albemarle's Catalyst Courier
, Vol.
59
, Spring
2005
, pp. 10–11.
44.
Lee
,
S.L.
, “
Latest Developments in Albemarle Hydroprocessing Catalysts
,”
Albemarle's Catalyst Courier
, Vol.
63
, Spring
2006
, pp. 8–9.
45.
Mayo
,
S.
, “
Ketjenfine (KF) 905 STARS Demonstrates High Activity and Stability in FCC-PT Service
,”
Albemarle's Catalyst Courier
, Vol.
66
, Winter
2006
, pp. 10–11.
46.
Leliveld
,
B.
, “
STARS Ketjenfine 860—Exceptional New Catalyst for Hydrocracking Pretreat
,”
Albemarle's Catalyst Courier
, Vol.
67
, Spring
2007
, pp. 6–7.
47.
Leliveld
,
B.
, “
New Ketjenfine 770 STARS to Improve Ultra-Low Sulfur Diesel Production
,”
Albemarle's Catalyst Courier
, Vol.
73
, Autumn
2008
, pp. 4–6.
48.
Toshima
,
H.
, “
Advances in Upgrading Heavy Oils and Coker Gas Oil Through Hydroprocessing
,” SCOPE 2007,
Albemarle Corporation
,
Baton Rouge, LA
.
49.
Lauritsen
,
J.V.
,
Helveg
,
S.
,
Lægsgaard
,
E.
,
Stensgaard
,
I.
,
Clausen
,
B.S.
,
Topsøe
,
H.
, and
Besenbacher
,
F.
, “
Atomic Scale Structure of Co-Mo-S Nanoclusters in Hydrotreating Catalysts
,”
J. Catalysis
, Vol.
197
,
2001
, pp. 1–5.
50.
Topsøe
,
H.
, et al
,
NPRA Annual Meeting
, AM-05-18,
San Francisco
, March 13–15,
2005
.
51.
Skyum
,
L.
, et al
,
ERTC 13th Meeting A6
,
Vienna
, Nov. 17–19,
2008
.
52.
Remans
,
T.J.
, et al
, “
Catalytic Solutions for Sustainable ULSD Production
,”
European Catalyst and Technology Conference
,
Prague
, February
2003
.
53.
Carlson
,
K.D.
, et al
,
ERTC 13th Meeting A4
, Nov. 17–19,
2008
.
54.
Campbell
,
T.
, et al
,
NPRA Annual Meeting
, AM-05-16,
San Francisco
, March 13–15,
2005
.
55.
Plantenga
,
F.
,
Albemarle's Catalyst Courier
, Vol.
47
, March
2002
.
56.
Mayo
,
S.
, Presented at the
NPRA Annual Meeting
,
San Francisco, CA
, March 13–15,
2005
, Paper AM-05-14.
57.
Boot
,
L.
, et al
,
Albemarle's Catalyst Courier
, Vol.
50
, December,
2002
.
58.
Brossard
,
D.N.
, “
Chevron Lummus Global RDS/VRDS Hydrotreating-Transportation Fuels from the Bottom of the Barrel
,” in
Meyers
R. A.
, Ed.,
Handbook of Petroleum Refining Process
, 3rd Ed.,
McGraw-Hill
,
New York
,
2004
, p. 8.1.
59.
Earls
,
D.E.
, “
Chevron Lummus Global On-Stream Catalyst Replacement Technology for Processing High-Metal Feeds
,” in
Meyers
R.A.
, Ed.,
Handbook of Petroleum Refining Process
, 3rd Ed.,
McGraw-Hill
,
New York
,
2004
, p. 10.1.
60.
Reynolds
,
B.E.
, and
Silverman
,
M.A.
, “
VRDS/RFCC Provides Efficient Conversion of Vacuum Bottoms into Gasoline
,” paper presented at the
Japan Petroleum Institute Petroleum Refining Conference
,
Tokyo, Japan
,
1990
.
61.
Reynolds
,
B.E.
, and
Brossard
,
D.N.
, “
RDS/VRDS Hydrotreating Broadens Application of RFCC
,” ATI Quarterly, 1995/1996.
62.
Hung
,
C.
,
Olbrich
,
H.C.
,
Howell
,
R.L.
, and
Heyse
,
J.V.
, “
Chevron's New HDM Catalyst System for a Deasphalted Oil Hydrocracker
,” in
Proceedings of the AICHE Spring National Meeting
,
1986
.
63.
Howell
,
R.L.
,
Hung
,
C.
,
Gibson
,
K.R.
, and
Chen
,
H.C.
, “
Catalyst Selection Important for Residuum Hydroprocessing
,”
Oil & Gas J.
, Vol.
83
,
1985
, pp. 121–128.
64.
Speight
,
J.G.
,
Petroleum Chemistry and Refining
,
Taylor & Francis
,
London
,
1997
.
65.
Reynolds
,
J.G.
, “
Characterization of Heavy Residua by Application of a Modified Separation and Electron Paramagnetic Resonance
,”
Liquid Fuels Technol.
, Vol.
3
,
1985
, pp. 73–105.
66.
Topsøe
,
H.
, and
Clausen
,
B.S.
, “
Active Sites and Support Effects in Hydrodesulfurization Catalysts
,”
Appl. Catal. A
, Vol.
25
,
1986
, pp. 273–293.
67.
Tamm
,
P.W.
,
Harnsberger
,
H.F.
, and
Bridge
,
A.G.
, “
Effects of Feed Metals on Catalyst Aging in Hydroprocessing Residuum
,”
Ind. Eng. Chem. Process Des. Dev.
, Vol.
20
,
1981
, pp. 262–273.
68.
Richardson
,
R.L.
,
Riddick
,
F.C.
, and
Ishikawa
,
M.
, “
New Shaped Catalyst Gives Two-Year Run on Mixed Resids.
,”
Oil & Gas J.
, Vol.
77
,
1979
, p. 95.
69.
Pearson
,
A.
, “
Aluminum Oxide (Alumina), Activated
,” in
Kirk-Othmer Encyclopedia of Chemical Technology
,
John Wiley & Sons
,
New York
,
2003
, Vol.
2
, pp. 391–403.
70.
Reynolds
,
B.E.
,
Rogers
,
J.L.
, and
Broussard
,
R.A.
, “
Evolution of Resid Conversion Options
,” paper presented at the
NPRA Annual Meeting
,
San Antonio, TX
,
1997
.
71.
Reynolds
,
B.E.
,
Cash
,
D.R.
, and
Armstrong
,
M.J.
, “
VRDS for Conversion to Middle Distillate
,” paper presented at the
NPRA Annual Meeting
,
San Francisco, CA
,
1998
.
72.
D'Amico
,
V.
,
Gieseman
,
J.
,
Van Broekhoven
,
E.
,
Van Rooijen
,
E.
, and
Nousiainen
,
H.
, Hydrocarbon Processing, February,
2006
, p. 65.
73.
Roeseler
,
C.M.
,
Black
,
S.M.
,
Shields
,
D.J.
, and
Gosling
,
C.D.
, paper presented at the
NPRA Annual Meeting
,
San Antonio, TX
,
2003
, paper AM-02-17.
74.
Jensen
,
A.B.
, and
Hommeltoft
,
S.I.
, paper presented at the
NPRA Annual Meeting
,
San Antonio, TX
,
2003
, paper AM-03-24.
75.
U.S. Patent 584997, 5739074.
76.
Numaguchi
,
T.
,
Hirano
,
A.
,
Shoji
,
K.
, and
Yoshida
,
S.
, “
Evaluation of Activity and Carbon Deposition of Steam Methane Reforming Catalysts
,”
J. Japan Petrol. Inst.
, Vol.
39
,
1996
, pp. 203–210.
77.
Numaguchi
,
T.
,
Catalysts & Catalysis
, Vol.
43
,
2001
, p. 287.
78.
Shoji
,
K.
,
Hirota
,
Y.
, and
Numaguchi
,
T.
, “
Development of Highly Active Nickel Catalyst for Steam Natural Gas Reforming
,”
Stud. Surf. Sci. Catal.
, Vol.
121
,
1999
, pp. 449–452.
79.
Satterfield
,
C.
,
Heterogeneous Catalysis in Industrial Practice
, 2nd Ed.,
Kriger
,
Malabar, FL
,
1996
.
80.
Ladebeck, and Wagner,
Handbook of Fuel Cell Technology
,
Wiley
,
West Sussex, UK
,
2003
.
81.
Iida
,
H.
,
Tahara
,
K.
,
Higashi
,
H.
, and
Igarashi
,
A.
,
Adv. Tech. Mat. Mat. Proc. J.
, Vol.
4
,
2002
, p. 62.
82.
Iida
,
H.
, and
Igarashi
,
A.
, “
Characterization of a Pt/TiO2 (Rutile) Catalyst for Water Gas Shift Reaction at Low-Temperatur
,”
Appl. Catal. A
, Vol.
298
,
2006
, pp. 152–160.
83.
Iida
,
H.
,
Kondo
,
K.
, and
Igarashi
,
A.
, “
Effect of Pt Precursors on Catalytic Activity of Pt/TiO2 (Rutile) for Water Gas Shift Reaction at Low Temperatur
,”
Catal. Comm.
, Vol.
7
,
2006
, pp. 240–244.
84.
Azzam
,
K.G.
,
Babich
,
I.V.
,
Seshan
,
K.
, and
Lefferts
,
L.
, “
A Bifunctional Catalyst for the Single-Stage Water-Gas Shift Reaction in Fuel Cell Applications. Part 1. Effect of the Support on the Reaction Sequence
,”
J. Catal.
, Vol.
251
,
2007
, pp. 153–162.
85.
Azzam
,
K.G.
,
Babich
,
I.V.
,
Seshan
,
K.
, and
Lefferts
,
L.
, “
A Bifunctional Catalyst for the Single-Stage Water-Gas Shift Reaction in Fuel Cell Applications. Part 2. Roles of the Support and Promoter on Catalyst Activity and Stability
,”
J. Catal.
, Vol.
251
,
2007
, pp. 163–171.
86.
Iida
,
H.
,
Someya
,
M.
,
Kondo
,
K.
, and
Igarashi
,
A.
,
Sci. Tech. Catal.
, Vol.
55
,
2006
, p. 265.
87.
Azzam
,
K.G.
,
Babich
,
I.V.
,
Seshan
,
K.
, and
Lefferts
,
L.
, “
Role of Re in Pt-Re/TiO2 Catalyst for Water Gas Shift Reaction: A Mechanistic and Kinetic Stud
,”
Appl. Catal. B
, Vol.
80
,
2008
, pp. 129–140.
88.
Zhu
,
X.
,
Hoang
,
T.
,
Lobban
,
L.L.
, and
Mallinson
,
R.G.
, “
Significant Improvement in Activity and Stability of Pt/TiO2 Catalyst for Water Gas Shift Reaction Via Controlling the Amount of Na Addition
,”
Catal. Lett.
, Vol.
129
,
2009
, pp. 135–141.
89.
Panagiotopoulou
,
P.
, and
Kondarides
,
D.I.
, “
Effect of the Nature of the Support on the Catalytic Performance of Noble Metal Catalysts for the Water-Gas Shift Reaction
,”
Catal. Today
, Vol.
112
,
2006
, pp. 49–52.
90.
Panagiotopoulou
,
P.
,
Christodoulakis
,
A.
,
Kondarides
,
E.I.
, and
Boghosian
,
S.
, “
Particle Size Effects on the Reducibility of Titanium Dioxide and Its Relation to the Water-Gas Shift Activity of Pt/TiO2 Catalyst
,”
J. Catal.
, Vol.
240
,
2006
, pp. 114–125.
91.
Sato
,
Y.
,
Terada
,
K.
,
Soma
,
Y.
,
Miyao
,
T.
, and
Naito
,
S.
, “
Marked Addition Effect of Re upon the Water Gas Shift Reaction over TiO2 Supported Pt, Pd and Ir Catalyst
,”
Catal. Comm.
, Vol.
7
,
2006
, pp. 91–95.
92.
Sato
,
Y.
,
Soma
,
Y.
,
Miyao
,
T.
, and
Naito
,
S.
, “
The Water-Gas-Shift Reaction over Ir/TiO2 and Ir-Re/TiO2 Catalyst
,”
Appl. Catal. A
, Vol.
304
,
2006
, pp. 78–85.
93.
Iida
,
H.
, and
Igarashi
,
A.
, “
Difference in the Reaction Behavior between Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 Catalysts for Low-Temperature Water Gas Shift Reaction
,”
Appl. Catal. A
, Vol.
303
,
2006
, pp. 48–55.
94.
Ruettinger
,
W.
,
Liu
,
X.
,
Xu
,
X.
, and
Farrauto
,
R.J.
,
Top Catal.
, Vol.
51
,
2008
, p. 60.
95.
Azzam
,
K.G.
,
Babich
,
I.V.
,
Seshan
,
K.
, and
Lefferts
,
L.
, “
Single Stage Water Gas Shift Conversion over Pt/TiO2—Problem of Catalyst Deactivatio
,”
Appl. Catal. A
, Vol.
338
,
2008
, pp. 66–71.
96.
Wang
,
W.
,
Gorte
,
R.J.
, and
Wagner
,
J.P.
, “
Deactivation Mechanisms for Pd/Ceria during the Water-Gas Shift Reaction
,”
J. Catal.
, Vol.
212
,
2002
, pp. 225–230.
97.
Henderson
,
M.A.
,
Surf. Sci. Rep.
, Vol.
46
,
2002
, p. 1.
98.
Takanabe
,
K.
Aika
,
K.-I.
,
Seshan
,
K.
, and
Lefferts
,
L.
, “
Sustainable Hydrogen from Bio-Oil—Steam Reforming of Acetic Acid As a Model Oxygenate
,”
J. Catal.
, Vol.
227
,
2004
, pp. 101–108.
99.
Jacobs
,
G.
,
Graham
,
U.M.
,
Chenu
,
E.
,
Patterson
,
P.M.
,
Dozier
,
A.
, and
Davis
,
B.H.
, “
Low-Temperature Water-Gas Shift: Impact of Pt Promoter Loading on the Partial Reduction of Ceria and Consequences for Catalyst Design
,”
J. Catal.
, Vol.
229
,
2005
, pp. 499–512.
100.
Goguet
,
A.
,
Shekhtman
,
S.O.
,
Burch
,
R.
,
Hardcare
,
C.
,
Meunier
,
F.C.
, and
Yablonsky
,
G.S.
, “
Pulse-Response TAP Studies of the Reverse Water-Gas Shift Reaction over a Pt/CeO2 Catalyst
,”
J. Catal.
, Vol.
237
,
2006
, pp. 102–110.
101.
Choung
,
S.Y.
,
Ferrandon
,
M.
, and
Krause
,
T.
, “
Pt-Re Bimetallic Supported on CeO2-ZrO2 Mixed Oxides as Water-Gas Shift Catalysts
,”
Catal. Today
, Vol.
99
,
2005
, pp. 257–262.
102.
Gorte
,
R.J.
, and
Zhao
,
S.
, “
Studies of the Water-Gas Shift Reaction with Ceria-Supported Precious Metals
,”
Catal. Today
, Vol.
104
,
2005
, pp. 18–24.
103.
Hilaire
,
S.
,
Wang
,
X.
,
Luo
,
T.
,
Gorte
,
R.J.
, and
Wagner
,
J.
, “
A Comparative Study of Water-Gas Shift Reaction over Ceria Supported Metallic Catalysts
,”
Appl. Catal. A
, Vol.
215
,
2001
, pp. 271–278.
104.
Wang
,
J.A.
,
Cuan
,
A.
,
Salamones
,
J.
,
Nava
,
N.
,
Castillo
,
S.
,
Moran-Pineda
,
M.
, and
Rojas
,
F.
, “
Studies of Sol-Gel TiO2 and Pt/TiO2 Catalysts for NO Reduction by CO in an Oxygen-Rich Conditio
,”
Appl. Surf. Sci.
, Vol.
230
,
2004
, pp. 94–105.
105.
Kawashima
,
Y.
,
Umeki
,
T.
, and
Okumura
,
K.
, presented at the
99th Catalysis Society of Japan Meeting
,
Kobe, Japan
,
2007
, Abstract No. 99.
106.
Umeki
,
T.
,
Takatsu
,
K.
,
Nakai
,
S.
,
Kawashima
,
Y.
, and
Okumura
,
K.
, presented at the
102nd Catalysis Society of Japan Meeting
,
Nagoya, Japan
,
2008
, Abstract No. 102.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal