Skip to Main Content
Skip Nav Destination
ASTM Manuals
Supplement to Corrosion Tests and Standards: Application and InterpretationAvailable to Purchase
Editor
Edward L. Hibner
Edward L. Hibner
Editor
1
Special Metals Corporation
Search for other works by this author on:
Harvey P. Hack
Harvey P. Hack
Section Editor
2
Northrup Grumman Corporation
Search for other works by this author on:
John R. Scully
John R. Scully
Section Editor
3
University of Virginia
Search for other works by this author on:
ISBN:
978-0-8031-7134-3
No. of Pages:
466
Publisher:
ASTM International
Publication date:
2022

The automotive industry is one of the key sectors of the economy throughout the world. Despite the transformation and disruption of much of the industry's traditional manufacturing methods and materials, high- and medium-volume passenger car and truck production continues to rely on the use of metallic construction materials. Corrosion management of those metallic structures is a priority for the automotive engineer. Vehicle bodies are constructed from ferrous and nonferrous materials, in sheet, cast, and extruded forms. The use of metallic coatings and joint designs that avoid galvanic corrosion and moisture accumulation enhance the corrosion resistance of the body. Protective coatings and sealants are applied to the assembled body in the paintshop. The interior, trim, chassis, and powertrain components are fitted in the final assembly line to produce the finished vehicle. Strategies to improve automobile fuel economy, environmental impact, quality, and reliability, while reducing manufacturing costs and increasing profit margins, have brought about considerable change in the industry. New designs and powertrains, improved processing, and new materials have been developed to meet these challenges. The resulting improvements in corrosion resistance have led to the extension of greater corrosion warranties to vehicle customers. Corrosion testing, both of components in the laboratory and of full vehicles at the test track, has played a major role in the development of corrosion-resistant vehicles. There is strong interest in the industry to use quicker and cheaper assessment methods to determine performance characteristics of vehicles and components in their service environments. Many vehicle manufacturers have developed custom corrosion test methods, leading to their proliferation, such that there is scope for rationalization of corrosion testing within the industry. This chapter addresses the testing technology used in the development of corrosion resistant vehicles and highlights some emerging trends for future corrosion testing.

1.
Alliance of Automobile Manufacturers, “
America's Automobile Industry Is One of the Most Powerful Engines Driving the U.S. Economy
,”
2020
, http://web.archive.org/web/20210509190303/https://www.autosinnovate.org/initiatives/the-industry
2.
Ebrahimi
M.
,
Baboli
A.
, and
Rother
E.
, “
The Evolution of World Class Manufacturing toward Industry 4.0: A Case Study in the Automotive Industry
,”
IFAC-PapersOnLine
52
, no.
10
(
2019
): 188–194.
3.
Ström
M.
, “
Automotive Proving Ground Corrosion Testing
,” in
Corrosion: Environments and Industries
, vol.
13C
, ed.
Cramer
S. D.
and
Covino
,
B. S.
 Jr.
(
Materials Park, OH
:
ASM International
,
2006
), 538–544.
4.
Olsson
K.
and
Sperle
J.-O.
, “
New Advanced Ultra-High Strength Steels for the Automotive Industry
,”
AutoTechnology
6
, (
2006
): 46–49.
5.
Bouaziz
O.
,
Zurob
H.
, and
Huang
M.
, “
Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications
,”
Steel Research International
84
, no.
10
(
2013
): 937–947.
6.
Joost
W. J.
and
Krajewski
P. E.
, “
Towards Magnesium Alloys for High-Volume Automotive Applications
,”
Scripta Materialia
128
(
2017
): 107–112,
7.
Brown
K. R.
,
Woods
R. A.
,
Springer
W.
,
Fujikura
C.
,
Nabae
M.
,
Bekki
Y.
,
Macé
R.
,
Ehrstrom
J. C.
, and
Warner
T.
,
The Corrosion Performance of Aluminum Automotive Body Panels in Service
, Technical Paper Series No. 980460 (
Warrendale, PA
:
SAE International
,
1998
).
8.
Hirsch
J.
, “
Recent Development in Aluminium for Automotive Applications
,”
Transactions of Nonferrous Metals Society of China
24
, no.
7
(
2014
): 1995–2002.
9.
Kulekci
M. K.
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
International Journal of Advanced Manufacturing Technology
39
, nos.
9–10
(
2008
): 851–865.
10.
Wayland
M.
, “
Carbon Fiber Truck Bed Just a Beginning
,” Automotive News, April 29,
2019
, http://web.archive.org/web/20210509191523/https://www.autonews.com/manufacturing/carbon-fiber-truck-bed-just-beginning
11.
Miel
R.
, “
Toyota Says Carbon Fiber Goes beyond Lightweighting
,” Automotive News, July 31,
2017
, http://web.archive.org/web/20210509193815/https://www.autonews.com/article/20170731/OEM01/170739914/toyota-says-carbon-fiber-goes-beyond-lightweighting
12.
Reinhold
B.
,
Blücher
D.
, and
Korte
M.
, “
Herausforderungen an Füge- und Oberflächentechnik für Zukünftige Leichtbaukonstruktionen im Automobilbau
,”
Materialwissenschaft und Werkstofftechnik
44
, no.
1
(
2013
): 58–69.
13.
Prosek
T.
,
Nazarov
A.
,
Goodwin
F.
,
Šerák
J.
, and
Thierry
D.
, “
Improving Corrosion Stability of ZnAlMg by Alloying for Protection of Car Bodies
,”
Surface and Coatings Technology
306
(
2016
): 439–447.
14.
Simko
S. J.
,
Schneider
B.
,
Tardiff
J. L.
,
Jagner
M.
, and
Drews
A.
,
Characterization of Zirconium Oxide-Based Pretreatment Coatings, Part 1: Variability in Coating Deposition on Different Metal Substrates
, Technical Paper Series No. 2009-01-0890 (
Warrendale, PA
:
SAE International
,
2009
).
15.
Amirudin
A.
and
Thierry
D.
, “
Corrosion Mechanisms of Phosphated Zinc Layers on Steel as Substrates for Automotive Coatings
,”
Progress in Organic Coatings
28
, no.
1
(
1996
): 59–75.
16.
Milošev
I.
and
Frankel
G. S.
, “
Review—Conversion Coatings Based on Zirconium and/or Titanium
,”
Journal of The Electrochemical Society
165
, no.
3
(
2018
): C127–C144.
17.
Schneider
B.
,
Drews
A.
,
Jagner
M.
,
Simko
S. J.
, and
Tardiff
J. L.
,
Characterization of Zirconium Oxide-Based Pretreatment Coatings, Part 2: Challenges in Coating Aluminum Body Panels
, Technical Paper Series No. 2009-01-0892, (
Warrendale, PA
:
SAE International
,
2009
).
18.
Slamova
K.
,
Schill
C.
,
Wiesmeier
S.
,
Köhl
M.
, and
Glaser
R.
, “
Mapping Atmospheric Corrosion in Coastal Regions: Methods and Results
,”
Journal of Photonics for Energy
2
, no.
1
(
2012
): 1–12.
19.
Kelly
V. R.
,
Findlay
S. E.
G.
,
Schlesinger
W. H.
,
Menking
K.
, and
Chatrchyan
A. M.
, “
Road Salt: Moving toward the Solution
” (
Millbrook, NY
:
Cary Institute of Ecosystem Studies
,
2010
).
20.
Annual Survey of State Winter Maintenance Data
,”
Clear Roads
, http://web.archive.org/web/20210509194224/https://clearroads.org/winter-maintenance-survey/
21.
Kelly
T. D.
and
Matos
G. R.
, “
Salt End-Use Statistics
,” in
Historical Statistics for Mineral and Mateiral Commodities in the United States
(
Reston, VA
:
U.S. Geological Society
,
2014
), http://web.archive.org/web/20210509194657/https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/historical-statistics/salt-use.pdf
22.
Baboian
R.
, “
Successes in Automotive Engineering
,”
Materials Performance
48
, no.
2
(
2009
): 16–17.
23.
Salt
,” in
Mineral Commodity Summaries”
(
Reston, VA
:
U.S. Geological Society
,
2020
), http://web.archive.org/web/20210509194759/https://pubs.er.usgs.gov/publication/mcs2020
24.
Nitrogen Dioxide Trends
,”
Environmental Protection Agency
,
2019
, http://web.archive.org/web/20210509194933/https://www.epa.gov/air-trends/nitrogen-dioxide-trends
25.
Sulfur Dioxide Trends
,”
Environmental Protection Agency
,
2019
, http://web.archive.org/web/20210509195037/https://www.epa.gov/air-trends/sulfur-dioxide-trends
26.
Bolen
W. P.
, “
Salt
,” in
2016 Minerals Yearbook
(
Reston, VA
:
U.S. Geological Society
, 2016), http://web.archive.org/web/20210509195208/https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb1-2016-salt.pdf
29.
Field Usage of Alternative Deicers for Snow and Ice Control
,” Transportation Research Synthesis, TRS 1706 (
2017
), http://web.archive.org/web/20210509195508/http://dot.state.mn.us/research/TRS/2017/TRS1706.pdf
30.
Kelting
D. L.
and
Laxson
C. L.
, “
Review of Effects and Costs of Road De-icing with Recommendations for Winter Road Management in the Adirondack Park
” (Report No. AWI2010-01,
Adirondack Watershed Institute
, Paul Smiths, NY,
2010
), http://web.archive.org/web/20210509195613/http://www.protectadks.org/wp-content/uploads/2010/12/Road_Deicing-1.pdf
31.
Enhanced Salt Brine: Liquid Deicer
” (Report No. DEICE-1115,
Cargill Deicing Technology
, North Olmsted, OH, April 11,
2018
), http://web.archive.org/web/20210509195708/https://www.cargill.com/doc/1432076034989/enhanced-salt-brine-sell-sheet.pdf
32.
33.
Prosek
T.
,
Thierry
D.
,
Taxén
C.
, and
Maixner
J.
, “
Effect of Cations on Corrosion of Zinc and Carbon Steel Covered with Chloride Deposits under Atmospheric Conditions
,”
Corrosion Science
49
, no.
6
(
2007
): 2676–2693.
34.
Jönsson
M.
, “
Investigation of the Corrosivity of De-Icing Materials
” (KIMAB-2012-554, swerea KIMAB, MRC Automotive Corrosion Member Program, Borås, Sweden,
2012
).
35.
Bengtsson Blücher
D.
,
Svensson
J.-E.
, and
Johansson
L. G.
, “
The Influence of CO2, AlCl3.6H2O, MgCl2.6H2O, Na2SO4 and NaCl on the Atmospheric Corrosion of Aluminum
,”
Corrosion Science
48
(
2006
): 1848–1866.
36.
Leygraf
C.
and
Graedel
T. E.
, “
Atmospheric Corrosion Gases and Their Involvement in Corrosion
,” in
Atmospheric Corrosion
(
Hoboken, NJ
:
Wiley
,
2000
), 37–53.
37.
Leygraf
C.
, “
Atmospheric Corrosion
,” in
Corrosion Mechanisms in Theory and Practice
(
Boca Rotan, FL
:
CRC Press
,
2012
), 681–716.
38.
May
A. A.
,
Nguyen
N. T.
,
Presto
A. A.
,
Gordon
T. D.
,
Lipsky
E. M.
,
Karve
M.
,
Gutierrez
A.
, et al
, “
Gas- and Particle-Phase Primary Emissions from In-Use, On-Road Gasoline and Diesel Vehicles
,”
Atmospheric Environment
88
(
2014
): 247–260.
39.
Nitrogen Oxides (NOx), Why and How They Are Controlled
” (EPA-456/F-99-006R,
U.S. Environmental Protection Agency
, Washington, DC,
1999
), http://web.archive.org/web/20210509200017/https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf
40.
Praveena
V.
and
Martin
M. L.
J.
, “
A Review on Various after Treatment Techniques to Reduce NOx Emissions in a CI Engine
,”
Journal of the Energy Institute
91
, no.
5
(
2018
): 704–720.
41.
Arroyave
C.
and
Morcillo
M.
, “
The Effect of Nitrogen Oxides in Atmospheric Corrosion of Metals
,”
Corrosion Science
37
, no.
2
(
1995
): 293–305.
42.
Farrow
L. A.
,
Graedel
T. E.
, and
Leygraf
C.
, “
Gildes Model Studies of Aqueous Chemistry, II: The Corrosion of Zinc in Gaseous Exposure Chambers
,”
Corrosion Science
38
, no.
12
(
1996
): 2181–2199.
43.
Castaño
J. G.
,
Arroyave
C.
, and
Morcillo
M.
, “
Characterization of Atmospheric Corrosion Products of Zinc Exposed to SO2 and NO2 Using XPS and GIXD
,”
Journal of Materials Science
42
, no.
23
(
2007
): 9654–9662.
44.
Leygraf
C.
and
Graedel
T. E.
, “
Corrosion in Outdoor Exposures
,” in
Atmospheric Corrosion
, (
Hoboken, NJ
:
Wiley
,
2000
), 91–108.
45.
Bengtsson Blücher
D.
,
Svensson
J.-E.
, and
Johansson
L. G.
, “
Influence of ppb Levels of SO2 on the Atmospheric Corrosion of Aluminum in the Presence of NaCl
,”
Journal of The Electrochemical Society Journal
152
, no.
10
(
2005
): B397–B404.
46.
Oesch
S.
and
Faller
M.
, “
Environmental Effects on Materials: The Effect of the Air Pollutants SO2, NO2, NO and O3 on the Corrosion of Copper, Zinc, and Aluminium. A Short Literature Survey and Results of Laboratory Exposures
,”
Corrosion Science
39
, no.
9
(
1997
): 1505–1530.
47.
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation
, ISO Standard No. 9223 (
Geneva, Switzerland
:
International Organization for Standarization
,
2012
).
48.
Baboian
R.
and
Turcotte
R. C.
, “
Development of Poultice Corrosion Tests for Automobiles
,”
Materials Performance
24
, no.
12
(
1985
): 13–17.
49.
Patterson
W. R.
, “
Materials, Design and Corrosion Effects on Exhaust-System Life
,”
SAE Transactions
87
(
1978
): 3294–3329.
50.
Thakur
S. N.
,
McMillen
J. R.
,
Holly
M. L.
, and
Samal
P. K.
,
High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications
, Technical Paper Series, (
Warrendale, PA
:
SAE International
,
2006
).
51.
Douthett
J.
, “
Automotive Exhaust System Corrosion
,” in
Corrosion: Environments and Industries
, vol.
13C
, ed.
Cramer
S. D.
and
Covino
,
B. S.
 Jr.
(
Materials Park, OH
:
ASM International
,
2006
), 519–530.
52.
Rowl
L. C.
, “
Automotive Engine Coolants: A Review of Their Requirements and Methods of Evaluation
,” in
Engine Coolant Testing: State of the Art
(
West Conshohocken, PA
:
ASTM International
,
1980
), 3–23.
53.
Beynon
E.
,
Cooper
N. R.
, and
Hannigan
H. J.
, “
Cooling System Corrosion in Relation to Design and Materials
,” in
Designing for Automotive Corrosion Prevention
(
Warrendale, PA
:
SAE International
,
1978
), 3285–3293.
54.
Gershun
A. V.
and
Woyciesjes
P. M.
, “
Engine Coolants and Coolant System Corrosion
,” in
Corrosion: Environments and Industries
, vol.
13C
, ed.
Cramer
S. D.
and
Covino
,
B. S.
 Jr.
(
Materials Park, OH
:
ASM International
,
2006
), 531–537.
55.
Mesa
C. A.
,
Engine Coolants
(
Livonia, MI
:
Technology Transfer Systems
, 2002).
56.
Abou-Ziyan
H. Z.
, “
Heat Transfer Characteristics of Some Oils Used for Engine Cooling
,”
Energy Conversion and Management
45
, no.
15
(
2004
): 2553–2569.
57.
Besser
C.
,
Steinschütz
K.
,
Dörr
N.
,
Novotny-Farkas
F.
, and
Allmaier
G.
, “
Impact of Engine Oil Degradation on Wear and Corrosion Caused by Acetic Acid Evaluated by Chassis Dynamometer Bench Tests
,”
Wear
317
, no.
1
(
2014
): 64–76.
58.
Fatima
N.
,
Minami
I.
,
Holmgren
A.
,
Marklund
P.
, and
Larsson
R.
, “
Surface Chemistry of Wet Clutch Influenced by Water Contamination in Automatic Transmission Fluids
,”
Tribology International
96
(
2016
): 395–401.
59.
Ryan
T. E.
and
Hinz
T.
,
Analysis of Water Content in Brake Fluid. Part I. Method Comparison: Karl Fisher Titration versus Refractive Index
, Technical Paper Series (
Warrendale, PA
:
SAE International
,
1997
).
60.
Kannan
B.
,
Fraley
S.
,
Pollum
M.
,
Fleischauer
R.
, and
Lim
M. L.
, “
Galvanic Corrosion of Automotive Mixed Metal Substrates: Fundamental Understanding
,”
ECS Meeting Abstracts
MA2019-02
(
2019
): 785.
61.
Chance
R. L.
and
Ceselli
R. G.
,
Corrosiveness of Exhaust Gas Condensates
, Technical Paper Series No. 830585 (
Warrendale, PA
:
SAE International
,
1983
).
62.
Badilla
G. L.
and
Gaynor
J. M.
T.
, “
Corrosion Analysis in Automotive Electronics
,” Materials Performance
5
, no.
4
(
2020
), http://web.archive.org/web/20210509200120/https://www.materialsperformance.com/articles/material-selection-design/2017/06/corrosion-analysis-in-automotive-electronics
63.
Piepho
L. L.
,
Singer
L.
, and
Ostermiller
M. R.
, “
Advancements in Automotive Corrosion Resistance
,” in
Proceedings of the Corrosion/91 Symposium: Automotive Corrosion and Prevention
, ed.
Baboian
R.
(
Houston, TX
,
NACE International
,
1993
), 20-1–20-21.
64.
Jordan
D. L.
and
Tardiff
J. L.
, “
Automotive Body Corrosion
,” in
Corrosion: Environments and Industries
, vol.
13C
, ed.
Cramer
S. D.
and
Covino
,
B. S.
 Jr.
(
Materials Park, OH
:
ASM International
,
2006
), 515–518.
65.
Courval
G.
, “
Corrosion of Aluminum Components in the Automotive Industry
,” in
Corrosion: Environments and Industries
, vol.
13C
, ed.
Cramer
S. D.
and
Covino
,
B. S.
 Jr.
(
Materials Park, OH
:
ASM International
,
2006
), 545–547.
66.
Prevention of Corrosion of Motor Vehicle Body and Chassis Components
, J447A_196409 (
Warrendale, PA
:
SAE International
,
2016
).
67.
Ellicks
D.
,
Friedersdorf
F.
,
Merrill
M.
, and
Kramer
P.
, “
Continuous Monitoring of Atmospheric Corrosion and Coating Degradation
” (paper presentation, Corrosion/2017,
NACE International
,
New Orleans, LA
, April 27,
2017
).
68.
Keller
M.
and
Wagner
D.
, “
Ford F150
” (paper presentation, EuroCarBody 2015 Conference,
Bad Nauheim, Germany
, Ocrober 21,
2015
).
69.
Liu
M.
,
Guo
Y.
,
Wang
J.
, and
Yergin
M.
, “
Corrosion Avoidance in Lightweight Materials for Automotive Applications
,”
NPJ Materials Degradation
2
, no.
1
(
2018
): 1–4.
70.
Akafuah
N. K.
,
Poozesh
S.
,
Salaimeh
A.
,
Patrick
G.
,
Lawler
K.
, and
Saito
K.
, “
Evolution of the Automotive Body Coating Process: A Review
,”
Coatings
6
, no.
2
(
2016
): 1–22.
71.
Liskiewicz
T. W.
,
Kubiak
K. J.
,
Mann
D. L.
, and
Mathia
T. G.
, “
Analysis of Surface Roughness Morphology with TRIZ Methodology in Automotive Electrical Contacts: Design against Third Body Fretting-Corrosion
,”
Tribology International
143
(
2020
): 106019.
72.
Tseng
T.-H.
and
Wu
A. T.
, “
Corrosion on Automobile Printed Circuit Broad
,”
Microelectronics Reliability
98
(
2019
): 19–23.
73.
Payer
J. H.
, “
Effect of Environmental Stress of Reliability of Automotive Electronics
,” in
Proceedings of the Corrosion/91 Symposium: Automotive Corrosion and Prevention
, ed.
Baboian
R.
(
Houston, TX
:
NACE International
,
1993
), 11-1–11-8.
74.
Lam
Y.-Z.
,
Maul
C.
, and
McBride
J. W.
, “
Temperature, Humidity and Pressure Measurement on Automotive Connectors
,”
IEEE Transactions on Components and Packaging Technologies
29
, no.
2
(
2006
): 333–340.
75.
Baboian
R.
,
Electrochemical Techniques for Corrosion Engineering
(
Houston, TX
:
NACE International
,
1987
.
76.
Abbott
W. H.
, “
Field vs Laboratory Experience in the Evaluation of Electronic Components and Materials
,”
Materials Performance
24
, no.
8
(
1985
): 46–50.
77.
Lyon
S. B.
,
Thompson
G. E.
, and
Johnson
J. B.
, “
Materials Evaluation Using Wet-Dry Mixed Salt Spray Tests
,” in
New Methods for Corrosion Testing of Aluminum Alloys
, ed.
Agarwala
V. S.
and
Ugiansky
G. M.
(
Philadelphia, PA
:
ASTM International
,
1992
), 20–31.
78.
Doppke
T. S.
and
Bryant
A. W.
,
The Salt Spray Test—Past, Present, and Future
, Technical Paper Series No. 831815 (
Warrendale, PA
:
SAE International
,
1983
).
79.
LeBozec
N.
,
Blandin
N.
, and
Thierry
D.
, “
Accelerated Corrosion Tests in the Automotive Industry: A Comparison of the Performance towards Cosmetic Corrosion
,”
Materials and Corrosion
59
, no.
11
(
2008
): 889–894.
81.
Hagler
J.
and
Rudolph
H.
, “
The Influence of Scribing and Evaluation on the Repeatability and Reproducibility of the New Standardized Corrosion Test DIN 55636 (Statistical Analysis of an Interlaboratory Study)
,” (paper presentation, EUROCORR 2019, Seville, Spain, September 9-13,
2019
).
82.
Van Den Steen
N.
,
Simillion
H.
,
Thierry
D.
,
Terryn
H.
, and
Deconinck
J.
, “
Comparing Modeled and Experimental Accelerated Corrosion Tests on Steel
,”
Journal of The Electrochemical Society
164
, no.
9
(
2017
): C554–C562.
83.
Ramamurthy
S.
,
Davidson
R. D.
,
McIntyre
N. S.
,
Courval
G.
, and
Allin
J.
, “
Corrosion Product Analysis of Aluminum Closure Panels
” (paper presentation, SAE 2005 World Congress and Exhibition,
Detroit, MI
, April 11–14,
2005
).
84.
Nakayama
T.
,
Shige
H.
,
Vega
L.
, and
Colvin
E.
,
Correlation between Accelerated Laboratory Tests and Field Tests for Filiform Corrosion of Painted Aluminum Alloy Sheets for Automobiles
, Technical Paper Series (
Warrendale, PA
:
SAE International
,
2003
).
85.
Hosking
N. C.
,
Ström
M. A.
,
Shipway
P. H.
, and
Rudd
C. D.
, “
Corrosion Resistance of Zinc–Magnesium Coated Steel
,”
Corrosion Science
49
, no.
9
(
2007
): 3669–3695.
86.
Delplancke
J. L.
,
Berger
S.
,
Lefèbvre
X.
,
Maetens
D.
,
Pourbaix
A.
, and
Heymans
N.
, “
Filiform Corrosion: Interactions between Electrochemistry and Mechanical Properties of the Paints
,”
Progress in Organic Coatings
43
, nos.
1–3
(
2001
): 64–74.
87.
LeBozec
N.
,
Persson
D.
,
Thierry
D.
, and
Axelsen
S. B.
, “
Effect of Climatic Parameters on Filiform Corrosion of Coated Aluminum Aloys
,”
Corrosion
60
, no.
6
(
2004
): 584–593.
88.
Visser
P.
,
Liu
Y.
,
Zhou
X.
,
Hashimoto
T.
,
Thompson
G. E.
,
Lyon
S.
,
van der Ven
L.
,
Mol
J. M.
C.
, and
Terryn
H.
, “
The Corrosion Protection of AA 2024-T3 Aluminium Alloy by Leaching of Lithium-Containing Salts from Organic Coatings
,”
Faraday Discussions
180
(
2015
): 511–526.
89.
Hosking
N.
and
Nichols
M. E.
, Corrosion Testing of Multi-Material Lightweight Vehicle (MMLV) Body Structure, Ford Research Laboratory Technical Report SRR-2015-0187, (Dearborn, MI:
Ford Motor Company
,
2015
).
90.
LeBozec
N.
and
Thierry
D.
, “
Influence of Climatic Factors in Cyclic Accelerated Corrosion Test towards the Development of a Reliable and Repeatable Accelerated Corrosion Test for the Automotive Industry
,”
Materials and Corrosion
61
, no.
10
(
2010
): 845–851.
91.
LeBozec
N.
,
LeGac
A.
, and
Thierry
D.
, “
Corrosion Performance and Mechanical Properties of Joined Automotive Materials
,”
Materials and Corrosion
63
, no.
5
(
2012
): 408–415.
92.
Proving Ground Vehicle Corrosion Testing
, J1950_198905 (
Warrendale, PA
:
SAE International
,
2016
).
93.
Santucci
R. J.
,
Holleman
M. D.
, and
Scully
J. R.
, “
Laboratory Accelerated and Field Exposure Testing of MgRP and MgORP on AA2024-T351: Chemical and Electrochemical Protection Effects
,”
Surface and Coatings Technology
383
(
2020
): 125245.
94.
Thierry
D.
,
Persson
D.
,
Luckeneder
G.
, and
Stellnberger
K.-H.
, “
Atmospheric Corrosion of ZnAlMg Coated Steel during Long Term Atmospheric Weathering at Different Worldwide Exposure Sites
,”
Corrosion Science
148
(
2019
): 338–354.
95.
Ganther
W. D.
,
Paterson
D. A.
,
Lewis
C.
,
Isaacs
P.
,
Galea
S.
,
Meunier
C.
,
Mangeon
G.
, and
Cole
I. S.
, “
Monitoring Aircraft Microclimate and Corrosion
,”
Procedia Engineering
188
(
2017
): 369–376.
96.
Cole
I. S.
,
Ganther
W. D.
,
Furman
S. A.
,
Muster
T. H.
, and
Neufeld
A. K.
, “
Pitting of Zinc: Observations on Atmospheric Corrosion in Tropical Countries
,”
Corrosion Science
52
, no.
3
(
2010
): 848–858.
97.
Undervehicle Coupon Corrosion Tests
, J1293_201604 (
Warrendale, PA
:
SAE International
,
2016
),
98.
Bryant
A. W.
,
1985 Body Corrosion Field Survey: 5 and 6 Year Old Vehicles
, Technical Paper Series No. 862025, (
Warrendale, PA
:
SAE International
,
1986
).
99.
Tiburcio
A. C.
and
Yergin
M. J.
,
U.S. Automotive Corrosion Trends: 1998 SAE (ACAP) Automotive Body Corrosion Survey Results
, Technical Paper Series No. 2003-01-1244 (
Warrendale, PA
:
SAE International
2003
).
100.
Garcia
J. J.
,
Exhaust Gas Condensate Corrosion Test on Low Pressure Cooling System of Aluminum Brazed EGR, ACAC and WCAC
, Technical Paper Series No. 2012-01-1947 (
Warrendale, PA
:
SAE International
,
2012
).
101.
Hirasawa
J.
,
Ujiro
T.
,
Satoh
S.
, and
Furukimi
O.
,
Development of High Corrosion Resistant Stainless Steels for Automotive Mufflers Based on Condensate Corrosion Test and Field Investigation
, Technical Paper Series No. 2001-01-0640 (
Warrendale, PA
:
SAE International
,
2001
).
102.
Ohtani
H.
,
Willermet
P. A.
,
Sprys
J. W.
,
Linden
J. L.
,
Flaherty
J. E.
,
King
T. E.
,
Kagawa
M.
, et al
,
Oxidation Stability of Automatic Transmission Fluids: A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee
, Technical Paper Series No. 2001-01-1991 (
Warrendale, PA
:
SAE International
,
2001
).
103.
Thomson
J. K.
,
Pawel
S. J.
, and
Wilson
D. F.
, “
Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol
,”
Fuel
111
(
2013
): 592–597.
104.
Jafari
H.
,
Idris
M. H.
,
Ourdjini
A.
,
Rahimi
H.
, and
Ghobadian
B.
, “
EIS Study of Corrosion Behavior of Metallic Materials in Ethanol Blended Gasoline Containing Water as a Contaminant
,”
Fuel
90
, no.
3
(
2011
): 1181–1187.
105.
Thomson
M. S.
and
Frankel
G. S.
, “
Atmospheric Pitting Corrosion Studies of AA7075-T6 under Electrolyte Droplets: Part I. Effects of Droplet Size, Concentration, Composition, and Sample Aging
,”
Journal of The Electrochemical Society
164
, no.
12
(
2017
): C653–C663.
106.
LeBozec
N.
,
Bougon
L.
,
Carter
J.
,
Scholz
T.
,
Oystein Knudsen
O.
, and
Flogard
A.
, “
Round-Robin Evaluation of ISO 20340 Annex a Test Method
” (paper presentation, Corrosion/2016, Vancouver, BC, Canada, March 6–10,
2016
).
107.
Townsend
H. E.
and
McCune
D. C.
, “
Round-Robin Evaluation of a New Standard Laboratory Test for Cosmetic Corrosion
” (paper presentation, SAE International Congress and Exposition,
Detroit, MI
, February 24,
1997
).
108.
Diler
E.
,
Lédan
F.
,
LeBozec
N.
, and
Thierry
D.
, “
Real-Time Monitoring of the Degradation of Metallic and Organic Coatings Using Electrical Resistance Sensors
,”
Materials and Corrosion
68
, no.
12
(
2017
): 1365–1376.
109.
Parker
M. E.
and
Kelly
R. G.
, “
Improved Atmospheric Corrosion Testing for Aluminum Alloys, Part I: Deconstructing ASTM G85-A2
,”
Corrosion
76
, no.
1
(
2020
): 39–50.
110.
Parker
M. E.
and
Kelly
R. G.
, “
Improved Atmospheric Corrosion Testing for Aluminum Alloys, Part II: Developing Improved Testing Protocol
,”
Corrosion
76
, no.
1
(
2020
): 51–62.
111.
Van den Steen
N.
,
Simillion
H.
,
Dolgikh
O.
,
Terryn
H.
, and
Deconinck
J.
, “
An Integrated Modeling Approach for Atmospheric Corrosion in Presence of a Varying Electrolyte Film
,”
Electrochimica Acta
187
(
2016
): 714–723,
112.
Mandel
M.
and
Krüger
L.
, “
Determination of Pitting Sensitivity of the Aluminium Alloy EN AW-6060-T6 in a Carbon-Fibre Reinforced Plastic/Aluminium Rivet Joint by Finite Element Simulation of the Galvanic Corrosion Process
,”
Corrosion Science
73
(
2013
): 172–180.
113.
Palani
S.
,
Hack
T.
,
Deconinck
J.
, and
Lohner
H.
, “
Validation of Predictive Model for Galvanic Corrosion under Thin Electrolyte Layers: An Application to Aluminium 2024-CFRP Material Combination
,”
Corrosion Science
78
(
2014
): 89–100.
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal