Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue Mechanisms
By
JT Fong
JT Fong
1
Editor, and Chairman of Symposium Organizing Committee
Search for other works by this author on:
ISBN-10:
0-8031-0345-X
ISBN:
978-0-8031-0345-0
No. of Pages:
923
Publisher:
ASTM International
Publication date:
1979

Corrosion fatigue is a generic term that is used to describe the phenomenon of cracking (including environment-enhanced fatigue crack growth) in materials under the combined actions of an applied cyclic stress and a corrosive (aggressive) environment. Quantitative characterization and understanding have been hampered by the complexity of the problem, difficulties in separating the effects associated with crack initiation and crack growth, and by the absence of a truly interdisciplinary attack of the problem. With the development of fracture mechanics technology and sophisticated techniques such as Auger electron spectroscopy and low-energy electron diffraction analysis, quantification of environment-enhanced fatigue crack growth has now been placed on a reasonably firm basis in terms of both steady-state and transient responses. Understanding of the chemical processes that control environment-enhanced fatigue crack growth is beginning to emerge from coordinated mechanical, metallurgical, and chemical studies. A fundamental approach that underlies these studies and recent progress using this approach are described. Areas and directions for future research are discussed.

1.
Mechanisms of Fatigue in Crystalline Solids
, (
Proceedings
, of International Conference, Orlando, Fla., 15–17 Nov. 1962),
Acta Metallurgica
 0001-6160, Vol.
11
,
1963
, pp. 639–828.
2.
Fatigue—An Interdisciplinary Approach
,
Syracuse University Press
, Syracuse, N.Y.,
1964
.
3.
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
.
4.
Corrosion Fatigue: Chemistry, Mechanics and Microstruclure
, NACE-2,
National Association of Corrosion Engineers
,
1972
.
5.
Wei
,
R. P.
,
Journal of Engineering Fracture Mechanics
, Vol.
1
,
1970
, pp. 633–651.
6.
Hoeppner
,
D. W.
and
Krupp
,
W. E.
, “
Prediction of Component Life by Application of Fatigue Crack Growth Knowledge
,” Report LR-25123,
Lockheed-California Co.
, Burbank, Calif.,
1972
.
7.
Paris
,
P. C.
,
Fatigue—An Interdisciplinary Approach
,
Syracuse University Press
,
Syracuse, N.Y.
,
1964
, pp. 107–132.
8.
Johnson
,
H. H.
and
Paris
,
P. C.
,
Journal of Engineering Fracture Mechanics
, Vol.
1
, No.
3
,
1968
, p. 3.
9.
Wei
,
R. P.
in
Proceedings
, Conference on the Fundamental Aspects of Stress Corrosion Cracking, NACE-1,
National Association of Corrosion Engineers
,
1969
, pp. 104–112.
10.
McEvily
,
A. J.
and
Wei
,
R. P.
in
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
,
NACE-2 National Association of Corrosion Engineers
,
1972
, pp. 381–395.
11.
Wei
,
R. P.
and
Speidel
,
M. O.
in
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
,
NACE-2 National Association of Corrosion Engineers
,
1972
, pp. 379–380.
12.
Tentative Method of Test for Constant-Load-Amplitude Fatigue Crack Growth Rates Above 10-8 m/cycle
,” (ASTM E647-78T)
American Society for Testing and Materials
,
1977
(in the final stage of approval process).
13.
Achter
,
M. R.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, pp. 181–204.
14.
Gallagher
,
J. P.
and
Wei
,
R. P.
in
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
, NACE-2,
National Association of Corrosion Engineers
,
1972
, pp. 409–423.
15.
Hudson
,
C. M.
and
Raju
,
K. N.
, NASA TN D-5702,
National Aeronautics and Space Administration
, date.
16.
Schijve
,
J.
, “
Fatigue Crack Propagation in Light Alloy Sheet Material and Structures
,” Report MP 195,
National Aerospace Laboratory NLR
, Amsterdam, The Netherlands,
08
1960
.
17.
Wei
,
R. P.
,
Novak
,
S. R.
, and
Williams
,
D. P.
in
Proceedings
, AGARD Conference No.
98
, Specialists Meeting on Stress Corrosion Testing Methods 1971 and
Materials Research and Standards
 0025-5394,
American Society for Testing and Materials
, Vol.
12
,
1972
, p. 25.
18.
Wei
,
R. P.
and
Landes
,
J. D.
,
Materials Research and Standards
 0025-5394, American Society for Testing and Materials Vol.
9
, No.
7
,
07
1969
, p. 9.
19.
Feeney
,
J. A.
,
McMillan
,
J. C.
, and
Wei
,
R. P.
,
Metallurgical Transactions
 0026-086X, Vol.
1
,
1970
, p. 741.
20.
Hartman
,
A.
and
Schijve
,
J.
, National Aerospace Laboratory NLR Technical Note MP 68001 U, Amsterdam, The Netherlands,
1968
.
21.
Bradshaw
,
F. J.
and
Wheeler
,
C.
,
Applied Materials Research
 0570-4847, Vol.
5
,
1966
, p. 112.
22.
Hartman
,
A.
,
International Journal of Fracture Mechanics
 0020-7268, Vol.
1
,
1965
, p. 167.
23.
Wei
,
R. P.
,
International Journal of Fracture Mechanics
 0020-7268, Vol.
4
,
1968
, p. 159.
24.
Miller
,
G. A.
,
Hudak
,
S. J.
, and
Wei
,
R. P.
,
Journal of Testing and Evaluation
 0090-3973, American Society for Testing and Materials, Vol.
1
,
1973
, p. 524.
25.
Bucci
,
R.
, “
Environment Enhanced Fatigue and Stress Corrosion Cracking of a Titanium Alloy Plus a Simple Model for Assessment of Environmental Influence of Fatigue Behavior
,” Ph.D. Dissertation,
Lehigh University
, Bethlehem, Pa., 1970.
26.
Landes
,
J. D.
, and
Wei
,
R. P.
,
Journal of Engineering Materials and Technology
 0094-4289,
Transactions
 0094-4289, American Society of Mechanical Engineers, Series H, Vol.
95
,
1973
, p. 2.
27.
Barsom
,
J. M.
in
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
, NACE-2,
National Association of Corrosion Engineers
,
1972
, pp. 424–436.
28.
Gallagher
,
J. P.
,
Corrosion Fatigue Crack Growth Behavior Above and Below KIscc
,” NRL Report 7064,
Naval Research Laboratory
, Washington, D.C.,
05
1970
.
29.
Hudak
,
S. J.
, Jr.
and
Wei
,
R. P.
in
Corrosion Fatigue: Chemistry, Mechanics and Microstructure
, NACE-2,
National Association of Corrosion Engineers
,
1972
, p. 433.
30.
Hutin
,
J. P.
, “
Sub-Critical Crack Growth in AISI 4340 Steel in Water and Water Vapor
,” M.S. Thesis,
Lehigh University
, Bethlehem, Pa.,
1975
.
31.
Pao
,
P. S.
,
Wei
,
W.
, and
Wei
,
R. P.
, “
Effect of Frequency on Fatigue Crack Growth Response of AISI 4340 Steel in Water Vapor
,”
Proceedings
, Symposium on Environment Sensitive Fracture of Engineering Materials, Chicago, Ill., 24–26 Oct. 1977,
American Institute of Mining, Metallurgical and Petroleum Engineers
, (to be published).
32.
Simmons
,
G. W.
,
Pao
,
P. S.
, and
Wei
,
R. P.
, “
Fracture Mechanics and Surface Chemistry Studies of Subcritical Crack Growth in AISI 4340 Steel
,”
Metallurgical Transactions A
 0360-2133, Vol.
9A
,
1978
, p. 1147.
33.
Dwyer
,
D. J.
,
Simmons
,
G. W.
, and
Wei
,
R. P.
,
Surface Science
 0039-6028, Vol.
64
,
1977
, p. 617.
34.
Wei
,
R. P.
and
Simmons
,
G. W.
,
Scripta Metallurgica
 0036-9748, Vol.
10
,
1976
, p. 153.
35.
Vosikovsky
,
O.
,
Corrosion
, Vol.
32
,
1976
, p. 472.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal