Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Fatigue Mechanisms
By
JT Fong
JT Fong
1
Editor, and Chairman of Symposium Organizing Committee
Search for other works by this author on:
ISBN-10:
0-8031-0345-X
ISBN:
978-0-8031-0345-0
No. of Pages:
923
Publisher:
ASTM International
Publication date:
1979

This paper reviews some recent experimental results on age-hardened A1-5Zn-1Mg, A1-4Cu, and Cu-2Co alloy single crystals. Experiments were performed with unnotched specimens to study their cyclic deformation behavior and with notched specimens to investigate the crack propagation in Stage I. Since at present no quantitative statement of the formation of persistent slipbands in age-hardened alloys is available, we choose to represent this important microscopic activity indirectly in terms of the amount of cyclic hardening. It is shown that lowering the test temperature and, in the aluminum alloys, changing the type of alloy additions from zinc plus magnesium to copper have qualitatively the same influence of impeding the formation of persistent slipbands and of homogenizing their distribution. The crack propagation experiments show that the same factors decrease the velocity of and the tendency to crack propagation in Stage I. In the A1-5Zn-1Mg alloy the presence of water vapor in the environmental atmosphere, which increases the Stage I crack propagation velocity at 50 Hz, was found to prevent crack propagation in Stage I if the frequency is lowered to 5 Hz, whereas in dry nitrogen gas Stage I crack propagation is not affected by a frequency change. The experiments show that easy formation of persistent slipbands and deformation highly localized in these bands are a prerequisite for the occurrence of extended slipband (Stage I) cracking. The influence on State I crack propagation exerted by the parameters considered is attributed to their effect on the formation of the persistent slipband ahead of the crack tip in which the crack propagates.

1.
Grosskreutz
,
J. C.
in
Metal Fatigue Damage—Mechanism, Detection, Avoidance, and Repair, ASTM STP 495
,
American Society for Testing and Materials
,
1971
, pp. 5–60.
2.
Laird
,
C.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, pp. 131–180.
3.
Pelloux
,
R. M. N.
in
Fracture 1969
,
Pratt
P. L.
, Ed.,
Chapman and Hall
,
London
,
1969
, pp. 731–744.
4.
Bowles
,
C. Q.
and
Broek
,
D.
,
International Journal of Fracture Mechanics
 0020-7268, Vol.
8
,
1972
, pp. 75–85.
5.
Tomkins
,
B.
and
Biggs
,
W. D.
,
Journal of Materials Science
 0022-2461, Vol.
4
,
1969
, pp. 544–553.
6.
Neumann
,
P.
,
Acta Metallurgica
 0001-6160, Vol.
22
,
1974
, pp. 1155–1165.
7.
Neumann
,
P.
,
Acta Metallurgica
 0001-6160, Vol.
22
,
1974
, pp. 1167–1178.
8.
Grosskreutz
,
J. C
,
Metallurgical Transactions
 0026-086X, Vol.
3
,
1972
, pp. 1255–1262.
9.
Nageswararao
,
M.
,
Kralik
,
G.
. and
Gerold
,
V.
.
Zeitschrift für Metallkunde
 0044-3093. Vol.
66
.
1975
, pp. 479–486.
10.
Nageswararao
,
M.
and
Gerold
,
V.
,
Metallurgical Transactions
 0026-086X, Vol.
7A
,
1976
, pp. 1847–1855.
11.
Nageswararao
,
M.
and
Wilhelm
,
M.
,
Aluminium
, Vol.
52
,
1976
, pp. 306–311.
12.
Gell
,
M.
and
Leverant
,
G. R.
,
Acta Metallurgica
 0001-6160, Vol.
16
,
1968
, pp. 553–561.
13.
Schijve
,
J.
in
Fatigue Crack Propagation, ASTM STP 415
,
American Society for Testing and Materials
,
1967
, pp. 415–459.
14.
Gerold
,
V.
,
Nageswararao
,
M.
, and
Wilhelm
,
M.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
67
,
1976
, pp. 800–806.
15.
Nageswararao
,
M.
and
Wilhelm
,
M.
in
Fracture 1977, Proceedings
, Fourth International Conference on Fracture,
Waterloo, Ont., Canada
, Vol.
2
,
1977
, pp. 703–709.
16.
Meyer
,
R.
,
Gerold
,
V.
, and
Wilhelm
,
M.
,
Acta Metallurgica
 0001-6160, Vol.
25
,
1977
, pp. 1187–1190.
17.
Dünkeloh
,
K.-H.
,
Kralik
,
G.
, and
Gerold
,
V.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
65
,
1974
, pp. 291–296.
18.
Nicholson
,
R. B.
and
Nutting
,
J.
,
Philosophical Magazine
 1478-6435, Vol.
3
,
1958
, p. 531.
19.
Witt
,
M.
and
Gerold
,
V.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
60
,
1969
, pp. 482–487.
20.
Watt
,
D. F.
,
Embury
,
J. D.
, and
Ham
,
R. K.
,
Philosophical Magazine
 1478-6435, Vol.
17
,
1968
, pp. 199–203.
21.
Mughrabi
,
H.
,
Materials Science and Engineering
 0025-5416, Vol.
33
,
1978
, pp. 207–233.
22.
Winter
,
A. T.
,
Philosophical Magazine
 1478-6435, Vol.
30
,
1974
, pp. 719–738.
23.
Finney
,
J. M.
and
Laird
,
C.
,
Philosophical Magazine
 1478-6435, Vol.
31
,
1975
, pp. 339–366.
24.
Clark
,
J. B.
and
McEvily
,
A. J.
,
Acta Metallurgica
 0001-6160, Vol.
12
,
1964
, pp. 1359–1372.
25.
Stubbington
,
C. A.
and
Forsyth
,
P. J. E.
,
Acta Metallurgica
 0001-6160, Vol.
14
,
1966
, pp. 5–12.
26.
Calabrese
,
C.
and
Laird
,
C.
,
Materials Science and Engineering
 0025-5416, Vol.
13
,
1974
, pp. 141–157.
27.
McGrawth
,
J. T.
and
Bratina
,
W. J.
,
Czechoslovak Journal of Physics
 0011-4626, Vol.
B19
,
1969
, p. 284.
28.
Kralik
,
G.
and
Schneiderhan
,
H.
,
Scripta Metallurgica
 0036-9748, Vol.
6
,
1972
, pp. 843–849.
29.
Schützner
,
P.
, “
Computer-unterstiitzte Untersuchungen des Verhaltens kubischflächenzentrierter Metalle und Legie-rungen bei Wechselverformung
,” Ph.D. Thesis,
Stuttgart University
, Stuttgart, Germany,
1974
.
30.
Abel
,
A.
and
Ham
,
R. K.
,
Acta Metallurgica
 0001-6160, Vol.
14
,
1966
, pp. 1495–1503.
31.
Wells
,
C. H.
and
Sullivan
,
C. P.
,
Transactions
 0096-7416, American Society for Metals, Vol.
57
,
1964
, pp. 841–855.
32.
Calabrese
,
C.
and
Laird
,
C.
,
Metallurgical Transactions
 0026-086X, Vol.
5
,
1974
, pp. 1785–1793.
33.
Maier
,
D.
, “
Die Versetzungsstruktur in wechselverformten Cu-Co-, Al-Zn- und Al-Zn-Mg-Einkristallen mit kohärenten Ausscheidungen
,” Ph.D. Thesis,
Stuttgart University
, Stuttgart, Germany,
1976
, to be published.
34.
Feltner
,
C. E.
and
Laird
,
C.
,
Transactions
 0096-4778, American Institute of Mining Engineers, Vol.
245
,
1969
, pp. 1372–1373.
35.
Vogel
,
W.
,
Wilhelm
,
M.
, and
Gerold
,
V.
, to be published.
36.
Dünkeloh
,
K.-H.
,
Kralik
,
G.
, and
Gerold
,
V.
,
Zeitschrift fur Metallkunde
, Vol.
65
,
1974
, pp. 773–777.
37.
Ogura
,
T.
,
Karashima
,
S.
, and
Tsurukame
,
K.
,
Transactions
 0021-4434, Japanese Institute of Metals, Vol.
16
,
1975
, p. 43.
38.
Wei
,
R. P.
,
Engineering Fracture Mechanics
 0013-7944, Vol.
1
,
1970
, p. 633.
39.
Böhmer
,
M.
and
Munz
,
D.
, Part I,
Metall
, Vol.
24
, No.
5
,
1970
, pp. 446–455, and
Bohmer
,
M.
and
Munz
,
D.
, Part II,
Metall
, Vol.
24
, No.
8
,
1970
, pp. 857–863.
40.
Nageswararao
,
M.
,
Gerold
,
V.
, and
Kralik
,
G.
,
Journal of Materials Science
 0022-2461, Vol.
10
,
1975
, pp. 515–524.
41.
Gest
,
R. J.
and
Troiano
,
A. R.
,
Corrosion
, National Association of Corrosion Engineers, Vol.
30
. No.
8
,
1974
, pp. 274–279.
42.
Speidel
,
M. O.
in
Hydrogen in Metals
,
Bernstein
J. M.
and
Thompsom
W.
, Eds.,
American Society for Metals
,
1974
, pp. 249–276.
43.
2Hockenhull
,
B. S.
and
Monks
,
H. A.
,
Metal Science Journal
 0026-0681, Vol.
5
,
1971
, pp. 125–130.
44.
Donovan
,
J. A.
,
Metallurgical Transactions
 0026-086X, Vol.
7A
,
1976
, pp. 1677–1683.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal