Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Industrial Applications of Titanium and Zirconium: Third Conference
By
RT Webster
RT Webster
1
Teledyne Wah Chang Albany
,
Albany, Ore. 97321
;
editor
.
Search for other works by this author on:
CS Young
CS Young
2
Astro Metallurgical
,
Wooster, Ohio 44691
;
editor
.
Search for other works by this author on:
ISBN-10:
0-8031-0211-9
ISBN:
978-0-8031-0211-8
No. of Pages:
229
Publisher:
ASTM International
Publication date:
1984

An extensive research effort carried out in the last three years on the mechanical behavior of titanium alloy powder compacts has increased considerably the confidence in powder metallurgy (PM) products to the point that they can now compete directly with ingot metallurgy (IM) components in performance and reliability. Two major approaches are used in titanium powder metallurgy, the blended elemental (BE) and the prealloyed methods. The BE approach, which is a sintering method, provides a relatively inexpensive method for fabrication of components or mill products. The prealloyed method is aimed at high integrity complex shape components for demanding applications. The extensive mechanical property and microstructure studies have shown that for most mechanical properties, such as tensile strength, fracture toughness, and fatigue crack growth rate, the behavior of PM compacts parallels that of IM products with similar microstructures. In the past, the fatigue life of PM products was a major concern because of the possibility of early fatigue crack initiation associated with powder contamination. The present work demonstrates that control over powder cleanliness can increase the fatigue strength at least to wrought product level. The current commercial availability of cleaner prealloyed powders and producer awareness of the necessity for cleaner powder handling practices will further increase the performance and the reliability of titanium PM products. The expanded use of titanium in gas turbine engine parts, airframe components, surgical implants, computer printer parts and energy systems is increasing the demand for this net-shape technology which allows cost-effective production of high performance titanium complex shapes.

1.
Jaffee
,
R. I.
in
Titanium '80 Science and Technology
,
Kimura
H.
and
Izumi
O.
, Eds.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1980
, pp. 53-74.
2.
Cotton
,
J. B.
in
Titanium Science and Technology
,
Jaffee
R. I.
and
Burte
H. M.
, Eds.,
Plenum Press
,
New York
,
1973
, pp. 2363-2372.
3.
Hasson
,
D. F.
and
Crowe
,
C. R.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 65-82.
4.
Crowe
,
C. R.
and
Hasson
,
D. F.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 93-110.
5.
Cox
,
B.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 123-142.
6.
Jette
,
P.
and
Sommer
,
A. W.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 199-216.
7.
Bannon
,
B. P.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 229-258.
8.
Luckey
,
H. A.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 293-312.
9.
Kubo
,
S.
in
Titanium for Energy and Industrial Applications
,
Eylon
D.
, Ed.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1981
, pp. 313-322.
10.
Froes
,
F. H.
,
Eylon
,
D.
,
Eichelman
,
G. E.
, and
Burte
,
H. M.
,
Journal of Metals
 0148-6608, Vol.
32
, No.
2
,
1980
, pp. 47-54.
11.
Eylon
,
D.
,
Field
,
M.
,
Froes
,
F. H.
, and
Eichelman
,
G. E.
,
SAMPE Quarterly
, Vol.
12
,
1981
,
SAMPE
,
Azusa, Calif.
, pp. 19-26.
12.
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980.
13.
Andersen
,
P. J.
and
Eloff
,
P. C.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 175-187.
14.
Abkowitz
,
S.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 291-301.
15.
Mahajan
,
Y.
,
Eylon
,
D.
,
Bacon
,
R. J.
, and
Froes
,
F. H.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 189-202.
16.
Andersen
,
P. J.
,
Svoyatytsky
,
V. M.
,
Froes
,
F. H.
,
Mahajan
,
Y.
, and
Eylon
,
D.
,
Modern Developments in Powder Metallurgy
,
MPIF Publications
,
Princeton, N.J.
, Vol.
13
,
1981
, pp. 537-549.
17.
Froes
,
F. H.
,
Eylon
,
D.
, and
Mahajan
,
Y.
,
Modern Developments in Powder Metallurgy
,
MPIF Publications
,
Princeton, N.J.
, Vol.
13
,
1981
, pp. 523-535.
18.
Smith
,
P. R.
,
Cooke
,
C. M.
,
Patel
,
A.
, and
Froes
,
F. H.
in
Proceedings
,
1982 MPIF National Powder Metallurgy Conference
,
MPIF
,
Princeton, N.J.
, pp. 339-359.
19.
Roberts
,
P. R.
and
Loewenstein
,
P.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 21-36.
20.
Eylon
,
D.
,
Omlor
,
R. E.
,
Bacon
,
R. J.
, and
Froes
,
F. H.
in
Titanium '80 Science and Technology
,
Kimura
H.
and
Izumi
O.
, Eds.,
TMS-AIME, Publications
,
Warrendale, Pa.
,
1980
, pp. 71-82.
21.
DeVillard
,
J.
and
Herteman
,
J.-P.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 59-70.
22.
Peebles
,
R. E.
and
Kelto
,
C. A.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 47-58.
23.
Dulis
,
E. J.
,
Chandhok
,
V. K.
,
Froes
,
F. H.
, and
Clark
,
L. P.
in
Proceedings
,
10th National SAMPE Technical Conference
,
Kiamesha Lake, N.Y.
,
10
1978
, pp. 316-329.
24.
Eylon
,
D.
and
Hall
,
J. A.
,
Metallurgical Transactions A
, Vol.
8A
,
1977
, pp. 981-990.
25.
Eylon
,
D.
,
Metallurgical Transactions A
, Vol.
10A
,
1979
, pp. 311-317.
26.
Davidson
,
D. L.
and
Eylon
,
D.
,
Metallurgical Transactions A
, Vol.
11A
,
1980
, pp. 837-843.
27.
Scarich
,
G. V.
,
Chanani
,
G. R.
,
Weaver
,
D. M.
, and
Petersen
,
V. C.
, in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 103-114.
28.
Froes
,
F. H.
and
Eylon
,
D.
,
Progress in Powder Metallurgy
, Vol.
37
,
1981
, pp. 279-288.
29.
Kao
,
W. H.
and
Orsborn
,
L. M.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of AIME
,
Las Vegas
, Nev., 1980, pp. 163-174.
30.
Kao
,
W. H.
Eylon
,
D.
,
Yolton
,
C. F.
, and
Froes
,
F. H.
,
Progress in Powder Metallurgy
,
MPIF Publications
,
Princeton, N.J.
, Vol.
37
,
1981
, pp. 289-301.
31.
Froes
,
F. H.
,
Eylon
,
D.
,
Wirth
,
G.
,
Grundhoff
,
K.-J.
, and
Smarsly
,
W.
,
Metals Powder Reports
, Vol.
38
, No.
1
,
1983
, pp. 36-41.
32.
Eylon
,
D.
,
Froes
,
F. H.
,
DeVillard
,
J.
, and
Herteman
,
J.-P.
, “
Evaluation of American- and French-Made Titanium Powders
,” an on-going program.
33.
Eylon
,
D.
and
Pierce
,
C. M.
,
Metallurgical Transactions A.
, Vol.
7A
,
1976
, pp. 111-121.
34.
Schwenker
,
S. W.
,
Sommer
,
A. W.
,
Eylon
,
D.
, and
Froes
,
F. H.
,
Metallurgical Transactions A
, Vol.
14A
,
1983
, pp. 1524-1528.
35.
Becker
,
D. W.
,
Baeslack
,
W. A.
 III
, and
Froes
,
F. H.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 217-228.
36.
Vicki
,
F. J.
in
Titanium Science and Technology
,
Jaffee
R. I.
and
Burte
H. M.
, Ed.,
Plenum Press
,
New York
,
1973
, pp. 733-741.
37.
Geisendorfer
,
R. F.
in
Powder Metallurgy of Titanium Alloys
,
Froes
F. H.
and
Smugeresky
J. E.
, Eds.,
Proceedings
,
Metallurgical Society of the AIME
,
Las Vegas
, Nev., 1980, pp. 151-162.
38.
Geisendorfer
,
R. F.
in
Titanium '80 Science and Technology
,
Kimura
H.
and
Izumi
O.
, Eds.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1980
, pp. 2223-2235.
39.
Eloff
,
P. C.
, work in progress,
Imperial Clevite
, Cleveland, Ohio,
1982
.
40.
Smith
,
P. R.
,
Froes
,
F. H.
, and
Cammett
,
J. T.
, “
Mechanical Behavior of Metal-Matrix Composites
,
Hock
J. E.
and
Amateau
M. F.
, Eds.,
TMS-AIME Publications
,
Warrendale, Pa.
,
1983
, pp. 143-168.
41.
Eylon
,
D.
and
Froes
,
F. H.
, in
Titanium Alloys in Surgical Implants
, ASTM STP 796,
Luckey
H. A.
and
Kubli
F.
, Eds.,
American Society for Testing and Materials
,
Philadelphia, Pa.
,
1983
, pp. 43-58.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal