Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Bearing and Transmission Steels Technology
Editor
John Beswick
John Beswick
Symposium Chair and STP Editor
1Montfoort,
SE
Search for other works by this author on:
ISBN:
978-0-8031-7745-1
No. of Pages:
558
Publisher:
ASTM International
Publication date:
2024

This study investigates and compares the evolution of subsurface hardness and microstructure of Hybrid 60 and 52100 steels under rolling contact fatigue (RCF) testing. Similar microstructural decay was identified for both Hybrid 60 and 52100 steel, evidenced by the formation of elongated ferrite and ferrite microbands during the first stage of the microstructural decay. Nano-sized ferrite grains were also observed in the region with maximum Hertzian stress after 1 × 108 stress cycles for both steels. In addition to the common microstructural decay in the two steels, the 52100 steel experienced microstructural decay in the form of dissolution of residual cementite and tempered carbides. The present study shows that the Hybrid 60 steel develops less microstructural decay than the 52100 steel at the same RCF conditions suggesting that Hybrid 60 could be suitable for replacing 52100 in applications where higher RCF is needed. The improved microstructure stability in Hybrid 60 is attributed to the more stable secondary carbides and intermetallic precipitates as compared to the cementite in the 52100 steel.

1.
Errichello
R.
,
Budny
R.
, and
Eckert
R.
, “
Investigations of Bearing Failures Associated with White Etching Areas (WEAs) in Wind Turbine Gearboxes
,”
Tribology Transactions
56
, no.
6
(
2013
): 1069–1076,
2.
Shibata
M.
,
Goto
M.
,
Ohta
A.
, and
Toda
K.
, “
Development of Long Life Rolling Bearings for Use in the Extreme Conditions
,” in
Bearing Steel Technology
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 285–296,
3.
Zwirlein
O.
and
Schlicht
H.
, “
Rolling Contact Fatigue Mechanisms—Accelerated Testing versus Field Performance
,” in
Rolling Contact Fatigue Testing of Bearing Steels
, ed.
Hoo
J.
(
West Conshohocken, PA
:
ASTM International
,
1982
), 358–379,
4.
Echeverri Restrepo
S.
,
Ooi
S. W.
,
Yan
P.
,
Andric
P.
,
Vegter
R. H.
, and
Lai
J.
, “
Dark Etching Regions under Rolling Contact Fatigue: A Review
,”
Materials Science and Technology
37
, no.
4
(
2021
): 347–376,
5.
Braza
J. F.
,
Pearson
P. K.
, and
Hannigan
C. J.
,
The Performance of 52100, M-50, and M-50 NiL Steels in Radial Bearings
, SAE Technical Paper 932470 (
Warrendale, PA
:
SAE Transactions
,
1993
), 437–449,
6.
Allison
B. D.
,
Subhash
G.
,
Arakere
N. K.
,
Chin
H.
,
Haluck
D.
, and
Yamaguchi
H.
, “
Extraction and Testing of Miniature Compression Specimens from Bearing Balls Subjected to Rolling Contact Fatigue
,”
Journal of Tribology
136
, no.
2
(
2014
): 1–7,
7.
Qin
Y.
,
Li
J.
, and
Herbig
M.
, “
Microstructural Origin of the Outstanding Durability of the High Nitrogen Bearing Steel X30CrMoN15-1
,”
Materials Characterization
159
(
2020
): 110049,
8.
Bridge
J. E.
,
Maniar
G. N.
, and
Philip
T. V.
, “
Carbides in M-50 High Speed Steel
,”
Metallurgical Transactions B
2
, no.
8
(
1971
): 2209–2214,
9.
Andersson
J. E.
,
Lindberg
F.
, and
Ooi
S.
, “
Hybrid Steel and Its Potential for Bearing Applications
,” in
Bearing Steel Technologies: 12th Volume, Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 436–454,
10.
Huang
Z.
, “
Creep-Resistant Aeroengine Shaft Steels: Precipitates and Consequences
,”
Materials Science and Technology
35
, no.
12
(
2019
): 1405–1415,
11.
Liu
Z.
,
Liu
C.
,
Miao
L.
,
Guo
X.
,
Ding
J.
, and
Zhang
H.
, “
The Evolution of Complex Carbide Precipitates in a Low Alloy Cr-Mo-V Steel after Long-Term Aging Treatment
,”
Materials (Basel)
12
, no.
10
(
2019
): 1724,
12.
Hamrock
B. J.
and
Dowson
D.
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results
,”
Journal of Tribology
99
, no.
2
(
1977
): 264–275.
13.
Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count
, ASTM E562-19e1 (
West Conshohocken, PA
:
ASTM International
, approved August 15,
2019
),
14.
Nematollahi
G. A.
,
Grabowski
B.
,
Raabe
D.
, and
Neugebauer
J.
, “
Multiscale Description of Carbon-Supersaturated Ferrite in Severely Drawn Pearlitic Wires
,”
Acta Materialia
111
(
2016
): 321–334,
15.
Guelton
N.
and
François
M.
, “
Strain-Induced Dissolution of Cementite in Cold-Drawn Pearlitic Steel Wires
,”
Metallurgical and Materials Transactions A
51
, no.
4
(
2020
): 1602–1613,
16.
El Laithy
M.
,
Wang
L.
,
Harvey
T. J.
,
Schwedt
A.
,
Vierneusel
B.
, and
Mayer
J.
, “
White Etching Bands Formation Mechanisms Due to Rolling Contact Fatigue
,”
Acta Materialia
232
(
2022
): 117932,
17.
El Laithy
M.
,
Wang
L.
,
Harvey
T. J.
,
Schwedt
A.
,
Vierneusel
B.
, and
Mayer
J.
, “
Mechanistic Study of Dark Etching Regions in Bearing Steels Due to Rolling Contact Fatigue
,”
Acta Materialia
246
(
2023
): 118698,
18.
Chen
Q. Z.
,
Ngan
A. H.
W.
, and
Duggan
B. J.
, “
Microstructure Evolution in an Interstitial-Free Steel during Cold Rolling at Low Strain Levels
,”
Proceedings of the Royal Society A
459
, no.
2035
(
2003
): 1661–1685,
19.
Embury
J. D.
and
Fisher
R. M.
, “
The Structure and Properties of Drawn Pearlite
,”
Acta Metallurgica
14
, no.
2
(
1966
): 147–159,
20.
Liu
G. Z.
,
Tao
N. R.
, and
Lu
K.
, “
316L Austenite Stainless Steels Strengthened by Means of Nano-Scale Twins
,”
Journal of Materials Science and Technology
26
, no.
4
(
2010
): 289–292,
21.
Nave
M. D.
and
Barnett
M. R.
, “
Fragmentation of Orientation within Grains of a Cold-Rolled Interstitial-Free Steel
,”
ISIJ International
44
, no.
1
(
2004
): 187–196,
22.
Mgbokwere
C. O.
,
Nutt
S. R.
, and
Duffy
J.
, “
Shear Band Formation in 4340 Steel: A TEM Study
,”
Mechanics of Materials
17
, nos.
2–3
(
1994
): 97–110,
23.
Zisman
A.
,
Teodosiu
C.
, and
Rybin
V.
, “
Micromechanics of Shear Microbands under Strain-Path Changes in Mild Steel
,”
Computational Materials Science
16
, nos.
1–4
(
1999
): 307–314,
24.
Yang
Z.
,
Liu
C.
,
Gao
Y.
,
Guo
X.
, and
Wan
Y.
, “
Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy
,”
Materials (Basel)
13
, no.
14
(
2020
): 3181,
25.
Maalekian
M.
and
Kozeschnik
E.
, “
A Thermodynamic Model for Carbon Trapping in Lattice Defects
,”
Calphad
32
, no.
4
(
2008
): 650–654,
26.
Granberg
F.
,
Terentyev
D.
, and
Nordlund
K.
, “
Interaction of Dislocations with Carbides in BCC Fe Studied by Molecular Dynamics
,”
Journal of Nuclear Materials
460
(
2015
): 23–29,
27.
Kiranbabu
S.
,
Qin
Y.
,
Sreekala
L.
,
Das
S. M.
,
Pippan
R.
,
Morsdorf
L.
, and
Herbig
M.
, “
Decomposition-Resistant Carbonitride Precipitates in X30CrMoN15-1 High-Nitrogen Bearing Steel Deformed by High-Pressure Torsion
,”
Materials Science and Engineering A
863
(
2023
): 144529,
28.
Ivanisenko
Y.
,
Lojkowski
W.
,
Valiev
R. Z.
, and
Fecht
H. J.
, “
The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel during High Pressure Torsion
,”
Acta Materialia
51
, no.
18
(
2003
): 5555–5570,
29.
Kalish
D.
and
Cohen
M.
, “
Structural Changes and Strengthening in the Strain Tempering of Martensite
,”
Materials Science and Engineering
6
, no.
3
(
1970
): 156–166,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal