Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Bearing and Transmission Steels Technology
Editor
John Beswick
John Beswick
Symposium Chair and STP Editor
1Montfoort,
SE
Search for other works by this author on:
ISBN:
978-0-8031-7745-1
No. of Pages:
558
Publisher:
ASTM International
Publication date:
2024

Steel components of bearings or constant velocity joint (CVJ) products are produced to meet numerous and sometimes conflicting requirements, such as performance, cost efficiency, quality, and carbon footprint or prosperous human development. Automotive, industry, and aerospace applications are all concerned with these challenges. The several steps of the manufacturing process must therefore be thoroughly understood and controlled to ensure the right level of targeted parameters at the right cost. For this purpose, studies have dealt with practical examples of such fine-tuning, considering fine metallurgical studies, methodology of controls, from the laboratory stage to the mass production stage. The present study deals with these issues in relation to case-carburized M50NiL steel to find the practical link between research and development and each manufacturing step, with the focus on the core and surface properties of components. In particular, grain size, residual stress profiles, microstructure, and precipitation were investigated due to their impact on the life duration of aerospace bearings. We first conducted a preliminary review of the existing literature containing published and quantitative data regarding the M50NiL grade. Then a test plan was carried out, and the results were analyzed using a thermodynamic approach and a quantitative analysis of precipitation linked to the manufacturing steps. The result was a better understanding of residual stress and core microstructure, making fine-tuning easier to achieve and adapt to customer demands. These results were obtained thanks to the efficient cooperation between metallurgists and manufacturing teams in considering the time to market for new developments.

1.
Pearson
P. K.
, “
The History and Future of Aircraft Turbine Engine Bearing Steels
,” in
Bearing Steels: Into the 21st Century
, ed.
Hoo
J. J.
C.
and
Green
W. B.
(
West Conshohocken, PA
:
ASTM International
,
1998
), 335–353,
2.
Bridge
J. E.
,
Maniar
G. N.
, and
Philip
T. V.
, “
Carbides in M50 High Speed Steel
,”
Metallurgical and Materials Transactions B
2
(
1971
): 2209–2213.
3.
Bhadeshia
H. K. D.
H.
, “
Steels for Bearings
,”
Progress in Materials Science
57
, no.
2
(
2012
): 268–435.
4.
Nygaard
J. R.
, “
Understanding the Behavior of Aircraft Bearing Steels under Rolling Contact Loading
” (PhD diss.,
University of Cambridge
,
2015
).
5.
Beer
O.
, “
Experiences in Heat Treatment of Heat Resistant Carburizing Bearing Steels
,”
HTM Journal of Heat Treatment and Materials
73
, no.
1
(
2018
): 27–40.
6.
Béranger
G.
,
Henry
G.
,
Labbe
G.
, and
Soulignac
P.
,
Les Aciers Spéciaux
[Special Steels] (
Cachan Cedex, France
:
Lavoisier TECH&DOC
,
1997
).
7.
Jiang
H.
,
Liu
Y.
,
Wu
Y.
,
Zhao
K.
,
Shan
D.
, and
Zong
Y.
, “
Grain Refinement Mechanism and Microstructural Evolution of M50NiL Steel during Multi-directional Impact Forging
,”
Journal of Materials Engineering and Performance
28
, no.
6
(
2019
): 3505–3516.
8.
Song
S. G.
,
Du
H.
, and
Sun
E. Y.
, “
Lattice Orientation Relationship between the M2C Carbide and the Ferrite Matrix in the M50NiL Bearing Steel
,”
Metallurgical and Materials Transactions A
33
(
2002
): 1963–1969.
9.
Klecka
M. A.
,
Subhash
G.
, and
Arakere
N. K.
, “
Microstructure-Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels
,”
Tribology Transactions
56
, no.
6
(
2013
): 1046–1059.
10.
Petry
P.
and
Dubois
P. E.
, “
Development and Characterization of Heat Treatment Ranges for Aeronautical Applications
” (Master Report,
NTN Europe and University of Compiègne
,
2017
).
11.
Persson
E.
, “
Austenite Grain Growth in Bearing Steels
” (Degree Program in Materials Design and Engineering,
Stockholm Royal Institute of Technology
,
2014
).
12.
Furuhara
L. T.
,
Kikumoto
K.
,
Saito
H.
,
Sekine
T.
,
Ogawa
T.
,
Morito
S.
, and
Maki
T.
, “
Phase Transformation from Fine-Grained Austenite
,”
ISIJ International
48
, no.
8
(
2008
): 1038–1045.
13.
Withers
P. J.
and
Bhadeshia
H. K. D.
H.
, “
Residual Stress. Part 1—Measurement Techniques
,”
Materials Science and Technology
17
, no.
4
(
2001
): 355–365.
14.
Ericsson
T.
, “
Residual Stresses Caused by Thermal and Thermochemical Surface Treatments
,”
Advances in Surface Treatments
(
1987
): 87–113.
15.
Fleurentin
A.
and
Lefebvre
F.
, “
Réflexion Générale sur les Contraintes Résiduelles Induites par Transformation Martensitique Superficielle (2ème partie) [General Reflection on the Residual Stresses Induced by Superficial Martensitic Transformation (2nd part)]
,”
Traitements et Matériaux
, (
2010
): 33–50.
16.
Parrish
G.
and
Harper
G. S.
,
Production Gas Carburizing
(
Oxford, UK
:
Pergamon Press
,
1985
).
17.
Coleman
W. S.
and
Simpson
M.
, “
Residual Stresses in Carburized Steels
,” in
Fatigue Durability of Carburized Steel
, ed.
Bidwell
J. B.
(
Materials Park, OH
:
American Society for Metals
,
1957
).
18.
Palaniradja
K.
,
Alagumurthi
N.
, and
Soundararajan
V.
, “
Residual Stresses in Case Hardened Materials
,”
The Open Materials Science Journal
4
(
2010
): 92–102.
19.
Eyzop
D.
, “
Caractérisation des Couches Cémentées en Basse Pression [Characterization of Cemented Layers at Low Pressure]
” (PhD thesis,
Université des Sciences et Technologies de Lille
,
1996
).
20.
Bamberger
E. N.
and
Kroeger
D. J.
, Rolling Element Fatigue Life of a Carburized Modified M50 Bearing Steel, NASA Technical Memorandum, Technical Report 89-C-011 (Cleveland, OH:
NASA Editions
,
1984
).
21.
Beumelburg
W.
,
Das Verhalten von Einsatzgehärteten Proben mit Verschiedenen Oberflächenzustanden und Randkohlenstoffgehalten im Umlauf Biege-, Statischen Biege und Schlagbiegeversuch
(
Karlsruhe, Germany
:
Universität Karlsruhe
,
1974
).
22.
Binot
N.
, “
Proposition et Caractérisation d’un Traitement Combiné (Cémentation Suivie d’une Nitruration) dans le cas d’un Acier à Durcissement Secondaire
” (PhD thesis,
Ecole des Mines de Douai
,
1998
).
23.
Böhmer
H. J.
, “
Residual Stresses and Material Behavior of M50NiL and RBD
,” in
Creative Use of Bearing Steels
, ed.
Hoo
J. J.
C.
(
West Conshohocken, PA
:
ASTM International
,
1993
), 34–48,
24.
Barrallier
L.
, “
Genèse des Contraintes Résiduelles de Nitruration. Etude Expérimentale et Modélisation [Genesis of Residual Nitriding Stresses. Experimental Study and Modeling]
” (PhD thesis,
Paris Institute of Technology
,
1992
).
25.
Fallot
G.
, “
Rôle du Carbone Lors de la Nitruration d’Aciers de Construction et Influence sur les Propriétés Mécaniques [Role of Carbon during Nitriding of Structural Steels and Influence on Mechanical Properties]
” (PhD thesis,
Paris Institute of Technology
,
2015
).
26.
Decaudin
B.
,
Mariadassou
C. D.
, and
Cizeron
G.
, “
Structural Study of M50 Steel Carbides
,”
Journal of Alloys and Compounds
226
, nos.
1–2
(
1995
): 208–212.
27.
Hetzner
D. W.
and
Van Geertruyden
W.
, “
Crystallography and Metallography of Carbides in High Alloy Steels
,”
Materials Characterization
59
, no.
7
(
2008
): 825–841.
28.
Jack
D. H.
and
Jack
K. H.
, “
Invited Review: Carbides and Nitrides in Steel
,”
Materials Science and Engineering
11
, no.
1
(
1973
): 1–27.
29.
Senior
B. A.
, “
The Precipitation of Laves’ Phase in 9Cr1Mo Steels
,”
Materials Science and Engineering A
119
(
1989
): L5–L7.
30.
Yamasaki
S.
, “
Modelling Precipitation of Carbides in Martensitic Steels
” (PhD thesis,
University of Cambridge
,
2003
).
31.
Berger
A.
,
Dubois
P. E.
, and
Müller
C.
, “
Improvements of Heat Treatments of Steels for Aerospace Bearings
” (master's thesis,
NTN Europe and Technische Universität of Darmstadt
,
2018
).
32.
Steel, Bars, Forgings, and Tubing 4.1Cr–3.4Ni–4.2Mo–1.2V (0.11–0.15C) Premium Aircraft-Quality for Bearing Applications Double Vacuum Melted
, AMS6278F (
Warrendale, PA
:
SAE International
,
2020
).
33.
Steels—Micrographic Determination of the Apparent Grain Size
, ISO 643:2019 (
Geneva, Switzerland
:
International Organization for Standardization
,
2019
).
34.
Aerospace Series—Metallic Materials—Test Methods—Part 001: Tensile Testing at Ambient Temperature
, NF EN ISO 2002-001 (
Saint-Denis, France
:
Association Francaise de Normalisation
,
2013
).
35.
Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method
, NF EN ISO 148-1 (
Saint-Denis, France
:
Association Francaise de Normalisation
,
2016
).
36.
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
, ASTM E399-20a (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2020
),
37.
Standard Test Method for Measurement of Fatigue Crack Growth Rates
, ASTM E647-15e1 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2015
),
38.
Castex
L.
,
Lebrun
J. L.
,
Maeder
G.
, and
Sprauel
J. M.
, “
Détermination des Contraintes Résiduelles par Diffraction des Rayons X [Determination of Residual Stresses by X-Ray Diffraction]
” (paper presentation, Continuing Education Days, ENSAM,
Paris
,
1981
).
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal