Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Bearing and Transmission Steels Technology
Editor
John Beswick
John Beswick
Symposium Chair and STP Editor
1Montfoort,
SE
Search for other works by this author on:
ISBN:
978-0-8031-7745-1
No. of Pages:
558
Publisher:
ASTM International
Publication date:
2024

Rolling contact fatigue life in rolling bearings and transmission components is strongly affected by metallurgical cleanliness and other parameters. Special steel quality has significantly improved over the past decades. Nonmetallic inclusions heavily influence contact fatigue life, and researchers have shown that different inclusion types can exist depending on the applied steelmaking technologies. It is important to recognize the importance of inclusion-matrix bonding. Some types are more susceptible to debonding, which influences contact fatigue strength. Debonded inclusions are internal stress concentrations and can initiate contact (and structural) fatigue failure if above a critical size. Hydrogen is trapped in microcavities in the microstructure. This paper reviews this effect for 52100 and carbon steels and discusses the relevance of hydrogen traps.

1.
Gould
B.
,
Demas
N. G.
, and
Greco
A. C.
, “
The Influence of Steel Microstructure and Inclusion Characteristics on the Formation of Premature Bearing Failures with Microstructural Alterations
,”
Materials Science and Engineering: A
751
(February
2019
): 237–245,
2.
Dogahe
K. J.
,
Guski
V.
,
Mlikota
M.
,
Schmauder
S.
,
Holweger
W.
,
Spille
J.
,
Mayer
J.
, et al
, “
Simulation of the Fatigue Crack Initiation in SAE 52100 Martensitic Hardened Bearing Steel during Rolling Contact
,”
Lubricants
10
, no.
4
(
2022
): 62,
3.
Allison
B.
and
Pandkar
A.
, “
Critical Factors for Determining a First Estimate of Fatigue Limit of Bearing Steels under Rolling Contact Fatigue
,”
International Journal of Fatigue
117
(
2018
): 396–406,
4.
Ryden
K.
and
Lund
T. B.
, “
Rotating Beam Testing of Bearing Steels—An Effective Rolling Contact Fatigue Test Complement
,” in
Bearing Steel Technologies, 9th Volume: Advances in Rolling Contact Fatigue Strength Testing and Related Substitute Technologies
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2012
), 203–217,
5.
Beswick
J. M.
,
Rolling Bearing Steel: Design, Technology, Testing and Measurements
, Manual MNL83-EB (
West Conshohocken, PA
:
ASTM International
,
2022
), 1–20,
6.
Atkinson
H. V.
and
Shi
G.
, “
Characterization of Inclusions in Clean Steels: A Review Including the Statistics of Extreme Methods
,”
Progress in Materials Science
48
, no.
5
(
2003
): 457–520,
7.
Campbell
F. C.
, ed.,
Elements of Metallurgy and Engineering Alloys
(
Materials Park, OH
:
ASM International
,
2008
),
8.
Beswick
J. M.
, “
Fracture and Fatigue Crack Propagation Properties of Hardened 52100 Steel
,”
Metallurgical Transactions A
20
(October
1989
): 1961–1973.
9.
Cao
Z.
,
Shi
Z.
,
Liang
B.
,
Zhang
X.
,
Cao
W.
, and
Weng
Y.
, “
Melting Route Effects on the Rotary Bending Fatigue and Rolling Contact Fatigue Properties of High Carbon Bearing Steel SAE52100
,”
International Journal of Fatigue
140
(November
2020
): 105854, 1–9.
10.
Nishikawa
T.
,
Nagayama
H.
,
Nishimon
S.
,
Asai
K.
,
Fujii
I.
, and
Sugimoto
T.
, “
Study of Evaluating Method for Non-Metallic Inclusions and Development of Slag Refining for Bearing Steel
,” in
Bearing Steel Technology
, ed.
Beswick
H. N.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 148–163,
11.
Mahaney
J. K.
 Jr.
, ed.,
Advances in the Production and Use of Steel with Improved Internal Cleanliness
(
West Conshohocken, PA
:
ASTM International
,
1999
),
12.
Rousseau
D.
,
Seraphin
L.
, and
Tricot
R.
, “
Nonmetallic Inclusion Rating and Fatigue Properties of Ball Bearing Steels
,” in
Bearing Steels: The Rating of Nonmetallic Inclusion
, ed.
Hoo
J. J.
C.
,
Kilhefner
P. T.
, and
Donze
J. J.
(
West Conshohocken, PA
:
ASTM International
,
1975
), 49–65,
13.
Trojahn
W.
and
Rösch
S.
, “
Steel Cleanliness and Bearing Life
,” in
Bearing Steel Technologies, 9th Volume: Advances in Rolling Contact Fatigue Strength Testing and Related Substitute Technologies
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2012
), 102–113,
14.
Lund
T.
and
Akesson
J.
, “
Oxygen Content, Oxidic Microinclusions, and Fatigue Properties of Rolling Bearing Steels
,” in
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
, ed.
Hoo
J. J.
C.
(
West Conshohocken, PA
:
ASTM International
,
1988
), 308–339,
15.
Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques
, ASTM E1019-11 (
West Conshohocken, PA
:
ASTM International
, approved March 15,
2011
),
16.
Zhang
L.
and
Thomas
B. G.
, “
State of the Art in Evaluation and Control of Steel Cleanliness
,”
ISIJ International
43
, no.
3
(
2003
): 271–291,
17.
Unigame
Y.
,
Hiraoka
K.
,
Takasu
I.
, and
Kato
Y.
, “
Evaluation Procedures of Nonmetallic Inclusions in Steel for Highly Reliable Bearings
,” in
Bearing Steel Technology—Advances and State of the Art in Bearing Steel Quality Assurance: 7th Volume
, ed.
Beswick
J.
(
West Conshohocken, PA
:
ASTM International
,
2007
), 34–41,
18.
Luiz Vasconcellos da Costa e Silva
André
, “
Non-Metallic Inclusions in Steels—Origin and Control
,”
Journal of Materials Research and Technology
7
, no.
3
(
2018
): 283–299,
19.
Eckel
J. A.
,
Glaws
P. C.
,
Wolfe
J. O.
, and
Zorc
B. J.
, “
Clean Engineered Steels—Progress at the End of the Twentieth Century
,” in
Advances in the Production and Use of Steel with Improved Internal Cleanliness
, ed.
Mahaney
J. K.
 Jr.
(
West Conshohocken, PA
:
ASTM International
,
1999
), 1–11,
20.
Tsubota
K.
,
Sato
T.
,
Kato
Y.
,
Hiraoka
K.
, and
Hayashi
R.
, “
Bearing Steels in the 21st Century
,” in
Bearing Steels: Into the 21st Century
, ed.
Hoo
J. J.
C.
and
Green
W. B.
(
West Conshohocken, PA
:
ASTM International
,
1998
), 202–215,
21.
Shimamoto
M.
,
Sugimura
T.
,
Kimura
S.
,
Owaki
A.
,
Kaizuka
M.
, and
Shindo
Y.
, “
Improvement of the Rolling Contact Fatigue Resistance in Bearing Steels by Adjusting the Composition of Oxide Inclusions
,” in
Bearing Steel Technologies, 10th Volume: Advances in Steel Technologies for Rolling Bearings
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 173–185,
22.
Ladutkin
D.
,
Korte
E.
,
Bleymehl
M.
,
Bruch
C.
, and
Doppler
K.-G.
, “
Advantages of Si Deoxidation of Bearing Steels for Steel Cleanness and for Composition and Morphology of Nonmetallic Inclusions in Rolled Product
,” in
Bearing Steel Technologies, 11th Volume: Progress in Steel Technologies and Bearing Steel Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2017
), 48–62,
23.
Yoshioka
T.
, “
Parameters Influencing Inclusion Compositions in Al-Killed Steel Melts during a Secondary Refining Process
” (PhD diss.,
KTH Royal Institute of Technology
,
2018
), https://web.archive.org/web/20230608181328/http://diva-portal.org/smash/get/diva2:1205605/FULLTEXT01.pdf
24.
Scheid
E.
and
Correa de Oliveira
D.
, “
Advances in Billet Cast Carbon Steel Quality for High-Performance Rolling Bearings
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 366–380,
25.
Qiao
T.
,
Cheng
G.
,
Huang
Y.
,
Li
Y.
,
Zhang
Y.
, and
Li
Z.
, “
Formation and Removal Mechanism of Nonmetallic Inclusions in 42CrMo4 Steel during the Steelmaking Process
,”
Metals
12
, no.
9
(
2022
): 1505,
26.
Xu
X.
,
Liu
J.
,
Xu
G.
,
Yin
Q.
,
Zhang
X.
, and
Munther
H.-Å.
, “
Improvements in GCr15 (52100) High Carbon Bearing Steel Steelmaking and Their Effect on Inclusions, Segregation, and Fatigue Properties
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 381–402,
27.
Riyahi Malayeri
K.
,
Ölund
P.
, and
Sjöblom
U.
, “
Thermodynamic Calculations versus Instrumental Analysis of Slag-Steel Equilibria in an ASEA–SKF Ladle Furnace
,” in
Bearing Steel Technologies, 10th Volume: Advances in Steel Technologies for Rolling Bearings
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 1–11,
28.
Waudby
P. E.
, “
Rare Earth Additions to Steel
,”
International Metals Reviews
23
, no.
1
(
1978
): 74–98,
29.
Wilson
W. G.
,
Kay
D. A.
R.
, and
Vahed
A.
, “
The Use of Thermodynamics and Phase Equilibria to Predict the Behavior of the Rare Earth Elements in Steel
,”
Journal of Metals
26
, no.
5
(
1974
): 14–23,
30.
Pan
F.
,
Zhang
J.
,
Chen
H.-L.
,
Su
Y.-H.
,
Kuo
C.-L.
,
Su
Y.-H.
,
Chen
S.-H.
, et al
, “
Effects of Rare Earth Metals on Steel Microstructures
,”
Materials
9
, no.
6
(
2016
): 417,
31.
Yang
C.
,
Luan
Y.
,
Li
D.
,
Li
Y.
, and
Tariq
N. H.
, “
Very High Cycle Fatigue Behavior of Bearing Steel with Rare Earth Addition
,”
International Journal of Fatigue
131
(
2020
): 105263.
32.
Garrison
W. M.
and
Maloney
J.
, “
Lanthanum Additions and the Toughness of Ultra-High Strength Steels and the Determination of Appropriate Lanthanum Additions
,”
Materials Science and Engineering: A
403
, nos.
1–2
(
2005
): 299–310.
33.
Monnot
J.
,
Heritier
B.
, and
Cogne
J. Y.
, “
Relationship of Melting Practice, Inclusion Type, and Size with Fatigue Resistance of Bearing Steels
,” in
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
, ed.
Hoo
J. J.
C.
(
West Conshohocken, PA
:
ASTM International
,
1988
), 149–165,
34.
Hoo
J. J.
C.
,
Kilhefner
P. T.
, and
J. J.
Donze, eds.
,
Bearing Steels: The Rating of Nonmetallic Inclusion
(
West Conshohocken, PA
:
ASTM International
,
1975
),
35.
Lund
T. B.
and
Stude
S.
, “
Microscope Inclusion Rating Standards and Fatigue Initiation Propensity
,” in
Bearing Steel Technologies, 10th Volume: Advances in Steel Technologies for Rolling Bearings
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 100–115,
36.
Standard Test Methods for Determining the Inclusion Content of Steel
, ASTM E45-18a (
West Conshohocken, PA
:
ASTM International
, approved June 1,
2018
),
37.
Steel—Determination of Content of Non-Metallic Inclusions—Micrographic Method Using Standard Diagrams
, ISO 4967:2013 (
Geneva, Switzerland
:
International Organization for Standardization
,
2013
).
38.
Chinese National Standard
GB/T 18254-2002,
High-Carbon Chromium Bearing Steel
(
Beijing, China
:
Chinese GB Standards
,
2002
).
39.
Wu
H.
,
Li
Q.
,
Wei
C.
, and
Wang
Z.
, “
Study on the Behaviour of DS-Class Inclusions in Advanced Bearing Steel
,”
Metallurgical Research and Technology
116
, no.
2
(
2019
): 223.
40.
Shi
G.
,
Atkinson
H. V.
,
Sellars
C. M.
,
Anderson
C. W.
, and
Yates
J. R.
, “
Statistical Prediction of the Maximum Inclusion Size in Bearing Steels
,” in
Bearing Steel Technology
, ed.
Beswick
H. N.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 125–137,
41.
Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
, ASTM E2283(2019) (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2019
),
42.
Hetzner
D. W.
, “
Developing ASTM E2283: Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
,”
Journal of ASTM International
3
, no.
8
(
2006
),
43.
Lane
S.
, “
Analysis of Microinclusions in Through-Hardening Bearing Steels
,” in
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
, ed.
Hoo
J. J.
C.
(
West Conshohocken, PA
:
ASTM International
,
1988
), 211–225,
44.
Determining the Inclusion Content of Steel
, SEP 1570/71 (
Dusseldorf, Germany
:
Verlag Stahleisen GmbH
,
2013
).
45.
Ekelund
S.
and
Werlefors
T.
, “
A System for the Quantitative Characterization of Microstructures by Combined Image Analysis and X-Ray Discrimination in the Scanning Electron Microscope
,” in
Scanning Electron Microscopy
(
Chicago, IL
:
IIT Research Institute
,
1976
), 417–424.
46.
Beswick
J. M.
, “
Quantitative Image and Electron Microprobe Analysis
,”
Scanning
6
, no.
3
(
1984
): 109–121.
47.
Ricker
B.
,
Patel
V.
, and
van Beek
C.
, “
Bearing Steel Quality Assurance with Next Generation SEM-EDS
,” in
Bearing Steel Technologies, 11th Volume: Progress in Steel Technologies and Bearing Steel Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2017
), 439–448,
48.
Shi
Z.
,
Xu
H.
,
Xu
D.
,
Yu
F.
,
Wang
C.
, and
Cao
W.
, “
Characterization of Inclusions in GCr15 Bearing Steel by ASPEX and Rotary Bending Fatigue Methods
,”
Iron and Steel
54
, no.
4
(
2019
): 55–62,
49.
Chauveau
F.
,
Odile
L.
,
Marc-Olivier
H.
,
Francois
P.
,
Sebastien
S.
,
Montagnon
J.
,
Wallmach
T.
, et al
, “
Inclusions Characterization in Metals and Alloys by Means of Automated Electron Microscopy
,” in
Proceedings of the Twenty-Fifth Anniversary International Conference on Metallurgy and Materials
(
Moravskoslezsky, Czech Republic
:
Tanger Ltd.
,
2016
), 143–147.
50.
Col
A.
,
Spadaccini
A.
,
Acevedo
D.
, and
Stocky
C.
, “
The Use of SEM-EDS and PDA-OES Techniques to Help the Development of the Production of Bearing Steel
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 352–365,
51.
Tomasello
C.
and
Shannon
G.
, “
Melt Methods and Their Effects on Cleanliness for Bearing Performance
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 515–527,
52.
Carey
S.
, “
VIM-VAR Steelmaking for Bearing Steel Grades
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 499–514,
53.
Auclair
G.
,
Ruby-Meyer
E.
,
Meilland
R.
, and
Rocabois
R.
, “
Cleanliness Assessment: A Critical Review and a Real Need to Predict Rolling Contact Fatigue Behavior
,” in
Bearing Steels: Into the 21st Century
, ed.
Hoo
J. J.
C.
and
Green
W. B.
(
West Conshohocken, PA
:
ASTM International
,
1998
), 39–54,
54.
Lund
T. B.
and
Ölund
L. J.
P.
, “
Improving Production, Control and Properties of Bearing Steels Intended for Demanding Applications
,” in
Advances in the Production and Use of Steel with Improved Internal Cleanliness
, ed.
Mahaney
J. K.
 Jr.
(
West Conshohocken, PA
:
ASTM International
,
1999
), 32–48,
55.
Nastasi
G.
,
Wester
R.
,
Colla
V.
, and
Noll
R.
, “
Determining Inclusion Size Distributions from OES/PDA Data
,”
Metallurgical Analysis
33
, no.
3
(
2013
): 9–13.
56.
Pande
M. M.
,
Guo
M.
,
Dumarey
R.
,
Devisscher
S.
, and
Planpain
B.
, “
Determination of Steel Cleanliness in Ultra Low Carbon Steel by Pulse Discrimination Analysis-Optical Emission Spectroscopy Technique
,”
ISIJ International
51
, no.
11
(
2011
): 1778–1787,
57.
Halász
E.
,
Li
K.
,
Dorier
J.-L.
, and
Böhlen
J.-M.
, “
Advances in Inclusion Analysis in Steels by Spark OES: Phenomenology and Calculation of Inclusions' Composition and Size
,”
Metallurgical Analysis
31
, no.
10
(
2011
): 7–13.
58.
Millman
S.
and
Pande
M. M.
,
DissTec: On-line Measurement of Steel Cleanness Using Rapid Inclusion Characterization Techniques
(
Middlesbrough, UK
:
Materials Processing Institute
,
2016
).
59.
Krebs
B.
,
Brun
N.
,
Spadaccini
A.
, and
Gremeaux
G.
, “
Application of the OES-PDA Measurements to Predict the Macro-Cleanliness of Products Coming from Continuous Casting Machine
,” in
Bearing Steel Technologies, 11th Volume: Progress in Steel Technologies and Bearing Steel Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2017
), 421–438,
60.
Hoo
J. J.
C.
, ed.,
Rolling Contact Fatigue Testing of Bearing Steels
(
West Conshohocken, PA
:
ASTM International
,
1982
),
61.
Sidoroff
C.
,
Girodin
D.
,
Dierickx
P.
, and
Dudragne
G.
, “
Rolling Contact Fatigue Evaluation of Materials Using the NTN-SNR FB2 Test Rig—A Useful Piece of Equipment for the Qualification of Steels and Steelmakers and for Research
,” in
Bearing Steel: Advances in Rolling Contact Fatigue Strength Testing and Related Substitute Technologies
(
West Conshohocken, PA
:
ASTM International
,
2012
), 117–161,
62.
Glover
D.
, “
A Ball-Rod Rolling Contact Fatigue Tester
,” in
Rolling Contact Fatigue Testing of Bearing Steels
, ed.
Hoo
J. J.
(
West Conshohocken, PA
:
ASTM International
,
1982
), 107–124,
63.
Gabelli
A.
,
Ioannides
S.
,
Beswick
J.
,
de Wit
G.
,
Krock
H.
,
Korenhof
B.
, and
Kerrigan
A.
, “
Rolling Bearing Material Quality Fatigue Testing—Material Quality Life Factors
,” in
Bearing Steel Technology
, ed.
Beswick
H. N.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 509–526,
64.
Kerrigan
A.
,
Kuijpers
C.
,
Gabelli
A.
, and
loannides
E.
, “
Cleanliness of Bearing Steels and Fatigue Life of Rolling Contacts
,”
Journal of ASTM International
3
, no.
6
(
2006
): 101–106,
65.
Blass
T.
,
Xu
X.
,
Wunder
K.
,
Trojahn
W.
,
Geng
K.
, and
Li
F.
, “
Influence of Steel Cleanliness on RCF and WEC Formation
,” in
Bearing Steel Technologies, 12th Volume: Progress in Bearing Steel Metallurgical Testing and Quality Assurance
, ed.
Beswick
J. M.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 26–49,
66.
Rolling Bearings—Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings
, ISO/TS 16281:2008 (
Geneva, Switzerland
:
International Organization for Standardization
,
2008
).
67.
Brooksbank
D.
and
Andrews
K. W.
, “
Tessellated Stresses Associated with Some Inclusions in Steel
,”
Journal of the Iron and Steel Institute
207
, no.
4
(
1969
): 474–479.
68.
Tsunekage
N.
,
Hashimoto
K.
,
Fujimatsu
T.
, and
Hiraoka
K.
, “
Initiation Behavior of Crack Originated from Non-Metallic Inclusion in Rolling Contact Fatigue,’'
Journal of ASTM International
7
, no.
2
(
2010
): 23–29,
69.
Hashimoto
K.
,
Fujimatsu
T.
,
Tsunekage
N.
,
Hiraoka
K.
,
Kida
K.
, and
Santos
E. C.
, “
Effect of Inclusion/Matrix Interface Cavities on Internal-Fracture-Type Rolling Contact Fatigue Life
,”
Materials and Design
32
, no.
10
(
2011
): 4980–4985,
70.
Melander
A.
, “
Simulation of the Behaviour of Short Cracks at Inclusions under Rolling Contact Fatigue Loading—Specially the Effect of Plasticity
,” in
Bearing Steels: Into the 21st Century
, ed.
Hoo
J. J.
C.
and
Green
W. B.
(
West Conshohocken, PA
:
ASTM International
,
1998
), 70–86,
71.
Dogahe
K. J.
,
Guski
V.
,
Mlikota
M.
,
Schmauder
S.
,
Holweger
W.
,
Spille
J.
,
Mayer
J.
, et al
, “
Simulation of the Fatigue Crack Initiation in SAE 52100 Martensitic Hardened Bearing Steel during Rolling Contact
,”
Lubricants
10
, no.
4
(
2022
): 62,
72.
Arakere
N. K.
, “
Gigacycle Rolling Contact Fatigue of Bearing Steels: A Review
,”
International Journal of Fatigue
93
,
Part 2
(
2016
): 238–249,
73.
Ravi
G.
,
De Waele
W.
,
Nikolic
K.
,
Petrov
R.
, and
Hertelé
S.
, “
Numerical Modelling of Rolling Contact Fatigue Damage Initiation from Non-Metallic Inclusions in Bearing Steel
,”
Tribology International
180
(
2023
): 108290.
74.
Lai
J.
and
Kadin
Y. A.
, “
A Better Understanding of Material Imperfections
,” Evolution, August
2018
, https://web.archive.org/web/20230406182128/https://evolution.skf.com/a-better-understanding-of-material-imperfections/
75.
Standard Specification for High-Carbon Anti-Friction Bearing Steel
, ASTM A295/A295M-14(
2020
) (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2020
),
76.
Otsuka
T.
,
Hanada
H.
,
Nakashima
H.
,
Sakamoto
K.
,
Hayakawa
M.
,
Hashizume
K.
, and
Sagisak
M.
, “
Observation of Hydrogen Distribution around Non-Metallic Inclusions in Steels with Tritium Microautoradiography
,”
Fusion Science and Technology
48
, no.
1
(
2005
): 708–711.
77.
Shen
K.
,
Wang
M.
,
Xu
L.
,
Cai
W.
,
Du
S.
, and
Liu
C.
, “
Fatigue Behavior of a New High Strength Martensitic Steel for Torsion Bar Spring
,”
Journal of Iron and Steel Research
33
, no.
5
(
2021
): 426–436.
78.
Ren
X.
,
Chu
W.
,
Li
J.
,
Qiao
L. J.
,
Jiang
B.
,
Chen
G.
, and
Cui
Y.
, “
Research of Flaking and Its Fractography in a Wheel Steel
,”
Acta Metallurgica Sinica
42
, no.
3
(
2006
): 273–279.
79.
Vegter
R. H.
and
Slycke
J. T.
,
‘’The Role of Hydrogen on Rolling Contact Fatigue Response of Rolling Element Bearings,’'
Journal of ASTM International
7
, no.
2
(
2010
),
80.
Wada
Y.
, “
Crack Behaviour around Non-Metallic Inclusions under Hydrogen Pre-Charged Rolling Contact
” (paper presentation, First ASTM Bearing and Transmission Steel Symposium,
New Orleans, LA
, November 2–4,
2022
).
81.
Shen
K.
,
Xu
L.
, and
Wang
M.
, “
Characterization of the Diffusible Hydrogen in Steel by Thermal Desorption Spectroscopy Method
,”
Physics Examination and Testing
35
, no.
6
(
2017
): 20–24.
82.
Wang
M.
, “
Investigation of Hydrogen Diffusion in Secondary Hardening Steel by Means of Thermal Desorption Spectrometry
,”
Journal of Aeronautical Materials
32
, no.
3
(
2012
): 5–10,
83.
Cheng
L.
,
Wei
Y.
,
Wu
K.
, and
Rodionova
I.
, “
Numerical Simulation on Influencing Factors of Thermal Desorption Spectrum of Hydrogen in Steel
,”
Journal of Iron and Steel Research
28
, no.
12
(
2016
): 67–74.
84.
Manabe
T.
, “
Improvement of Hydrogen Embrittlement Resistance by Fine Carbide Precipitation
,”
Ferrum
25
, no.
7
(
2020
): 443–447.
85.
Zhiqiang
L.
,
Maosheng
Y.
,
Jianxin
L.
, et al
, “
Effect of Precipitated Phase on Resistance to Hydrogen Embrittlement of High Co-Cr-Mo-Ni Bearing Gear Steel
,”
Journal of Iron and Steel Research
30
, no.
8
(
2018
): 666–673.
86.
Zhang
S.
,
Bai
X.
, and
Liu
D.
, “
Simulation Test of Influence of Temper Rolling on Structure and Hydrogen Storage Property of 2.12 mm Hot-Rolled Enamel Steel
,”
Special Steel
38
, no.
3
(
2017
): 14–17.
87.
Matsuo
T.
,
Homma
N.
,
Matsuoka
S.
, and
Murakami
Y.
, “
Effect of Hydrogen and Prestrain on Tensile Properties of Carbon Steel SGP (0.078C-0.012Si-0.35Mn, mass%) for 0.1MPa Hydrogen Pipelines
,”
Transactions of the Japanese Society of Mechanical Engineers A
74
, no.
744
(
2008
): 1164–1173.
88.
Matsuoka
S.
,
Tsutsumi
N.
, and
Murakami
Y.
, “
Effects of Hydrogen on Fatigue Crack Growth and Stretch Zone of 0.08mass%C Low Carbon Steel Pipe
,”
Transactions of the Japanese Society of Mechanical Engineers A
74
, no.
748
(
2008
): 1528–1537.
89.
Wranik
J.
,
Holweger
W.
,
Lutz
T.
,
Albrecht
P.
,
Reichel
B.
, and
Wang
L.
, “
A Study on Decisive Early Stages in White Etching Crack Formation Induced by Lubrication
,”
Lubricants
10
, no.
5
(
2022
): 96,
90.
Manieri
F.
,
Stadler
K.
,
Morales-Espejel
G. E.
, and
Kadiric
A.
, “
The Origins of White Etching Cracks and Their Significance to Rolling Bearing Failures
,”
International Journal of Fatigue
120
(
2019
): 107–133,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal