Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Absorbed hydrogen impacts the structural integrity of zirconium alloy components, particularly under conditions in which hydrides form. Improving the understanding of hydrogen dissolution and precipitation and hydride morphology under reactor-relevant conditions is crucial to predicting hydrogen concentration profiles, blister formation, fracture properties, and delayed hydride cracking susceptibility. Many previous studies of hydride precipitation used maximum temperatures well above the “memory effect” threshold at which nucleation sites are removed (>400°C), causing precipitation to shift to colder temperatures with an observed hysteresis of about 100°C. Laboratory studies often use short hold times at the maximum temperature (minutes), in contrast to power reactors, which operate isothermally for months between cooling cycles. When ensuring the memory effect is maintained, differential scanning calorimetry (DSC) results demonstrate that the hysteresis is approximately 40°C. The same hysteresis is observed when cooling with hydrides present at the maximum temperature, indicating that nucleation does not explain this hysteresis. DSC heating and cooling to a variety of reactor-relevant temperatures was performed on both hydrided Zr-2.5Nb and Zircaloy-2, where hold times ranged between 1 min and 1,000 h, followed by cooling to determine a new precipitation onset temperature. After 1,000 h at 300°C the observed hysteresis in Zr-2.5Nb had decreased to 7°C and is predicted to require more than 100 days to decrease to less than 1°C. Additionally, delayed hydride cracking tests with 1,000-h soak times prior to loading were performed and were found to complement the DSC experiments; the long times required to approach equilibrium help explain how the direction of test temperature approach affects DHC behavior. Additionally, the DSC equilibrium concentrations are in excellent agreement with terminal solid solubility concentrations determined from CANDU pressure tube surveillance data. Improved nomenclature is needed to define nonequilibrium heating and cooling curves that depend on temperature and time history.

1.
Rodgers
D.
,
Griffiths
M.
,
Bickel
G.
,
Buyers
A.
,
Coleman
C.
,
Nordin
H.
, and
Lawrence
S. S.
, “
Performance of Pressure Tubes in CANDU Reactors
,”
CNL Nuclear Review
5
, no.
1
(
2016
): 1–15.
2.
Motta
A. T.
,
Capolungo
L.
,
Chen
L. Q.
,
Cinbiz
M. N.
,
Daymond
M. R.
,
Koss
D. A.
,
Lacroix
E.
 et al
, “
Hydrogen in Zirconium Alloys: A Review
,”
Journal of Nuclear Materials
518
(
2019
): 440–460.
3.
Steuwer
A.
,
Santisteban
J. R.
,
Preuss
M.
,
Peel
M. J.
,
Buslaps
T.
, and
Harada
M.
, “
Evidence of Stress-Induced Hydrogen Ordering in Zirconium Hydrides
,”
Acta Materialia
57
, no.
1
(
2009
): 145–152.
4.
Zanellato
O.
,
Preuss
M.
,
Buffiere
J. Y.
,
Ribeiro
F.
,
Steuwer
A.
,
Desquines
J.
,
Andrieux
J.
, and
Krebs
B.
, “
Synchrotron Diffraction Study of Dissolution and Precipitation Kinetics of Hydrides in Zircaloy-4
,”
Journal of Nuclear Materials
420
(
2012
): 537–547.
5.
Pan
Z. L.
,
Ritchie
I. G.
, and
Puls
M. P.
, “
The Terminal Solid Solubility of Hydrogen and Deuterium in Zr-2.5Nb Alloys
,”
Journal of Nuclear Materials
228
, no.
2
(
1996
): 227–237.
6.
Une
K.
and
Ishimoto
S.
, “
Dissolution and Precipitation Behavior of Hydrides in Zircaloy-2 and High Fe Zircaloy
,”
Journal of Nuclear Materials
322
, no.
1
(
2003
): 66–72.
7.
Gibbs
J. W.
, “
On the Equilibrium of Heterogeneous Substances
,” in
Transactions of the Connecticut Academy of Arts and Sciences
, vol.
3
(
New Haven
:
Connecticut Academy of Arts and Sciences
, 1874–1878), 108–248, 343–524.
8.
Colas
K.
,
Motta
A.
,
Daymond
M. R.
, and
Almer
J.
, “
Mechanisms of Hydride Reorientation in Zircaloy-4 Studied in Situ
,” in
Zirconium in the Nuclear Industry: 17th International Symposium
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2014
), 1107–1137,
9.
Lacroix
E.
,
Motta
A. T.
, and
Almer
J. D.
, “
Experimental Determination of Zirconium Hydride Precipitation and Dissolution in Zirconium Alloy
,”
Journal of Nuclear Materials
509
(
2018
): 162–167.
10.
Lacroix
E.
,
Simon
P. C.
A.
,
Motta
A. T.
, and
Almer
J.
, “
Zirconium Hydride Precipitation and Dissolution Kinetics in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 67–91,
11.
Santisteban
J. R.
,
Vicente-Alvarez
M. A.
,
Vizcaíno
P.
,
Banchik
A. D.
, and
Almer
J. D.
, “
Hydride Precipitation and Stresses in Zircaloy-4 Observed by Synchrotron X-Ray Diffraction
,”
Acta Materialia
58
, no.
20
(
2010
): 6609–6618.
12.
Vizcaino
P.
,
Flores
A. V.
,
Bozzano
P. B.
,
Banchik
A. D.
,
Versaci
R. A.
, and
Rios
R. O.
, “
Hydrogen Solubility and Microstructural Changes in Zircaloy-4 Due to Neutron Irradiation
,”
Journal of ASTM International
8
, no.
1
(
2010
): JAI102949,
13.
Blackmur
M. S.
,
Robson
J. D.
,
Preuss
M.
,
Zanellato
O.
,
Cernik
R. J.
,
Shi
S. Q.
,
Ribeiro
F.
, and
Andrieux
J.
, “
Zirconium Hydride Precipitation Kinetics in Zircaloy-4 Observed with Synchrotron X-Ray Diffraction
,”
Journal of Nuclear Materials
464
(
2015
): 160–169.
14.
Topping
M.
,
Long
F.
,
Cherubin
I.
,
Badr
N. N.
,
Cui
J.
,
Park
J. S.
, and
Daymond
M. R.
, “
Investigating the Stability of Reoriented Hydrides and Their Reprecipitation Using In-Situ Heating Experiments
,”
Journal of Nuclear Materials
564
(
2022
): 153670,
15.
McRae
G. A.
and
Coleman
C. E.
, “
Precipitates in Metals That Dissolve on Cooling and Form on Heating: An Example with Hydrogen in Alpha-Zirconium
,”
Journal of Nuclear Materials
499
(
2018
): 622–640.
16.
Root
J. H.
,
Small
W. M.
,
Khatamian
D.
, and
Woo
O. T.
, “
Kinetics of the δ to γ Zirconium Hydride Transformation in Zr-2.5 Nb
,”
Acta Materialia
51
(
2003
): 2041–2053.
17.
Root
J. H.
and
Fong
R. W.
L.
, “
Neutron Diffraction Study of the Precipitation and Dissolution of Hydrides in Zr-2.5Nb Pressure Tube Material
,”
Journal of Nuclear Materials
232
, no.
1
(
1996
): 75–85.
18.
Khatamian
D.
and
Root
J. H.
, “
Comparison of TSSD Results Obtained by Differential Scanning Calorimetry and Neutron Diffraction
,”
Journal of Nuclear Materials
372
, no.
1
(
2008
): 106–113.
19.
Kearns
J. J.
, “
Terminal Solubility and Partitioning of Hydrogen in α-Phase of Zirconium, Zircaloy-2 and Zircaloy-4
,”
Journal of Nuclear Materials
22
(
1967
): 292–303.
20.
Kammenzind
B. G.
,
Franklin
D. G.
,
Peters
H. R.
, and
Duffin
W. J.
, “
Hydrogen Pickup and Redistribution in Alpha-Annealed Zircaloy-4
,” in
Zirconium in the Nuclear Industry: Eleventh International Symposium
, ed.
Bradley
E. R.
and
Sabol
G. P.
(
West Conshohocken, PA
:
ASTM International
,
1996
), 338–369,
21.
Kammenzind
B. F.
,
Berquist
B. M.
,
Bajaj
R.
,
Kreyns
P. H.
, and
Franklin
D. G.
, “
The Long-Range Migration of Hydrogen through Zircaloy in Response to Tensile and Compressive Stress Gradients
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 196–233,
22.
Sawatzky
A.
,
Ledoux
G. A.
,
Tough
R. L.
, and
Cann
C. D.
, “
Hydrogen Diffusion in Zirconium-Niobium Alloys
,” in
Metal–Hydrogen Systems
, ed.
Veziroglu
T. N.
(
Oxford, UK
:
Pergamon Press
,
1982
), 109–120.
23.
Sawatzky
A.
, “
Hydrogen in Zircaloy-2: Its Distribution and Heat of Transport
,”
Journal of Nuclear Materials
2
, no.
4
(
1960
): 321–328.
24.
McMinn
A.
,
Darby
E. C.
, and
Schofield
J. S.
, “
The Terminal Solid Solubility of Hydrogen in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 173–195,
25.
Parodi
S. A.
,
Ponzoni
L. M.
,
De Las Heras
M. E.
,
Mieza
J. I.
, and
Domizzi
G.
, “
Study of Variables that Affect Hydrogen Solubility in α + β Zr-Alloys
,”
Journal of Nuclear Materials
477
(
2016
): 305–317.
26.
Khatamian
D.
, “
Solubility and Partitioning of Hydrogen in Metastable Zr-Based Alloys Used in the Nuclear Industry
,”
Journal of Alloys and Compounds
293
(
1999
): 893–899.
27.
Khatamian
D.
, “
DSC ‘Peak Temperature’ versus ‘Maximum Slope Temperature’ in Determining TSSD Temperature
,”
Journal of Nuclear Materials
405
, no.
2
(
2010
): 171–176.
28.
McRae
G. A.
,
Coleman
C. E.
,
Nordin
H. M.
,
Leitch
B. W.
, and
Hanlon
S. M.
, “
Diffusivity of Hydrogen Isotopes in the Alpha Phase of Zirconium Alloys Interpreted with the Einstein Flux Equation
,”
Journal of Nuclear Materials
510
(
2018
): 337–347.
29.
Pan
Z. L.
and
Puls
M. P.
, “
Precipitation and Dissolution Peaks of Hydride in Zr–2.5Nb during Quasistatic Thermal Cycles
,”
Journal of Alloys and Compounds
310
(
2000
): 214–218.
30.
Slattery
G. F.
, “
The Terminal Solubility of Hydrogen in the Zirconium/2 at% Chromium/0.16 at% Iron Alloy
,”
Journal of Nuclear Materials
32
, no.
1
(
1969
): 30–38.
31.
Welland
M. J.
and
Hanlon
S. M.
, “
Prediction of the Zirconium Hydride Precipitation Barrier with an Anisotropic 3D Phase-Field Model Incorporating Bulk Thermodynamics and Elasticity
,”
Computational Materials Science
171
(202): 109266,
32.
Kolesnik
M.
,
Aliev
T.
, and
Likhanskii
V.
, “
The Modeling of the Hydrogen Solid Solubility Hysteresis in Zirconium Alloys
,”
Acta Materialia
177
(
2019
): 131–140.
33.
Hanlon
S. M.
, “
The Effect of Testing Direction on DHC Growth Rate Using Zr-2.5 Nb Plate
” (PhD diss.,
Carleton University
,
2013
).
34.
Shi
S. Q.
,
Shek
G. K.
, and
Puls
M. P.
, “
Hydrogen Concentration Limit and Critical Temperatures for Delayed Hydride Cracking in Zirconium Alloys
,”
Journal of Nuclear Materials
218
, no.
2
(
1995
): 189–201.
35.
Cameron
D. J.
and
Duncan
R. G.
, “
On the Existence of a Memory Effect in Hydride Precipitation in Cold-Worked Zr-2.5% Nb
,”
Journal of Nuclear Materials
68
, no.
3
(
1977
): 340–344.
36.
Long
F.
,
Hanlon
S. M.
, and
Daymond
M. R.
, “
Transformation Behavior of Hydrides Precipitated with or without Stress in Zr-2.5Nb Investigated by In-Situ S/TEM Thermal Cycling
,”
Journal of Nuclear Materials
559
(
2022
): 153428,
37.
Long
F.
,
Topping
M.
,
Hanlon
S. M.
,
Badr
N. N.
, and
Daymond
M. R.
, “
In Situ S/TEM Study of Hydride Dissolution/Precipitation Behavior in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 20th International Symposium
, ed.
Yagnik
S. K.
and
Preuss
M.
(
West Conshohocken, PA
:
ASTM International
,
2023
), 755–779,
38.
Hanlon
S. M.
,
Persaud
S. Y.
,
Long
F.
, and
Daymond
M. R.
, “
Advanced Characterization of Hydrides in Zirconium Alloys
,” in
Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors
, ed.
Jackson
J. H.
,
Paraventi
D.
, and
Wright
M.
(
Cham, Switzerland
:
Springer
,
2019
), 1793–1813.
39.
Nordin
H.
,
Hilton
V.
,
Buyers
A. W.
,
Coleman
C. E.
, and
McRae
G. A.
, “
Effect of Irradiation on Terminal Solid Solubility of Hydrogen in Zr-2.5Nb
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R.
and
Motta
A.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 1136–1166,
40.
Northwood
D. O.
and
Kosasih
U.
, “
Hydrides and Delayed Hydrogen Cracking in Zirconium and Its Alloys
,”
International Metals Reviews
28
, no.
1
(
1983
): 92–121.
41.
Hanlon
S.
,
McRae
G.
,
Coleman
C.
, and
Buyers
A.
, “
Fracture of Gamma and Delta Hydrides during Delayed Hydride Cracking
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 762–785,
42.
Ambler
J. F.
R.
, “
Effect of Direction of Approach to Temperature on the Delayed Hydrogen Cracking Behavior of Cold-Worked Zr-2.5Nb
,” in
Zirconium in the Nuclear Industry: Sixth International Symposium
, ed.
Franklin
D.
and
Adamson
R.
(
West Conshohocken, PA
:
ASTM International
,
1984
), 653–674,
43.
Ambler
J. F.
R.
and
Coleman
C. E.
, “
Acoustic Emission during Delayed Hydrogen Cracking in Zr-2.5 wt% Nb Alloy
,” in
Proceedings of the Second International Congress on Hydrogen in Metals
(
Oxford, UK
:
Pergamon Press
,
1977
), Paper 3C10.
44.
Schofield
J. S.
,
Darby
E. C.
, and
Gee
C. F.
, “
Temperature and Hydrogen Concentration Limits for Delayed Hydride Cracking in Irradiated Zircaloy
,” in
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ed.
Moan
G.
and
Rudling
P.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 339–357,
45.
Sagat
S.
,
Chow
C. K.
,
Puls
M. P.
, and
Coleman
C. E.
, “
Delayed Hydride Cracking in Zirconium Alloys in a Temperature Gradient
,”
Journal of Nuclear Materials
279
, no.
1
(
2000
): 107–117.
46.
Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors, IAEA-TECDOC-1410 (Vienna, Austria:
International Atomic Energy Agency
,
2004
).
47.
De Las Heras
M. E.
,
Parodi
S. A.
,
Ponzoni
L. M.
E.
,
Mieza
J. I.
,
Müller
S. C.
,
Alcantar
S. D.
, and
Domizzi
G.
, “
Effect of Thermal Cycles on Delayed Hydride Cracking in Zr-2.5 Nb Alloy
,”
Journal of Nuclear Materials
509
(
2018
): 600–612.
48.
McRae
G. A.
,
Coleman
C. E.
, and
Leitch
B. W.
, “
The First Step for Delayed Hydride Cracking in Zirconium Alloys
,”
Journal of Nuclear Materials
396
(
2010
): 130–143.
49.
Cheadle
B. A.
,
Coleman
C. E.
, and
Ambler
J. F.
R.
, “
Prevention of Delayed Hydride Cracking in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: Seventh International Symposium
, ed.
Adamson
R. B.
and
Van Swam
L. F.
P.
(
West Conshohocken, PA
:
ASTM International
,
1987
), 224–240,
50.
Dunn
J. T.
,
Kakaria
B. K.
,
Graham
J.
, and
Jackman
A. H.
, CANDU-PHW Fuel Channel Replacement Experience, AECL-7538 (Chalk River, Canada:
Atomic Energy of Canada Ltd.
,
1982
).
51.
Beale
J.
,
Yoon
B.
,
Daum
R.
, and
Hanlon
S. M.
, “
Estimation of Hydrogen in Zircaloy Using Multi Frequency Eddy Current
” (paper presentation, TopFuel 2018,
Prague, Czech Republic
, September 30–October 4,
2018
).
52.
Griffiths
M.
and
Winegar
J. E.
, The Transformation Behaviour of the Beta Phase in Zr-2.5 wt% Nb Pressure Tubes, AECL-10835 (Chalk River, Canada:
Atomic Energy of Canada Ltd.
,
1994
).
53.
Khatamian
D.
, “
Effect of β-Zr Decomposition on the Solubility Limits for H in Zr–2.5Nb
,”
Journal of Alloys and Compounds
356
(
2003
): 22–26.
54.
Jovanović
M. T.
,
Eadie
R. L.
,
Ma
Y.
,
Anderson
M.
,
Sagat
S.
, and
Perović
V.
, “
The Effect of Annealing on Hardness, Microstructure and Delayed Hydride Cracking in Zr–2.5Nb Pressure Tube Material
,”
Materials Characterization
47
(
2001
): 259–268.
55.
Nordin
H.
,
Ulaganathan
J.
,
Hanlon
S.
, and
Broad
D.
, “
Effect of Cold Work on Hydrogen Diffusion in Zr-2.5%Nb Alloys at Reactor Temperatures
,” in
Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors
, ed.
Jackson
J. H.
,
Paraventi
D.
, and
Wright
M.
(
Cham, Switzerland
:
Springer
,
2019
), 103–109.
56.
Carpenter
G. J.
C.
and
Watters
J. F.
, “
Irradiation Damage Recovery in Some Zirconium Alloys
,”
Zirconium in Nuclear Applications
, ed.
Schemel
J. H.
and
Rosenbaum
H. S.
(
West Conshohocken, PA
:
ASTM International
,
1974
), 400–415,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal