Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

This study investigated the formation of ζ- and γ-hydride phases among furnace-cooled zirconium-hydride precipitates in Zircaloy-2. A previous in situ hydride precipitation experiment (conducted in 2018) suggested that both γ and δ hydrides are stable phases in Zircaloy-2 and can form simultaneously during the close-to-equilibrium conditions. To satisfy Gibbs’ phase rule, it was suggested that the coexistence between the γ and δ phases must take place through the formation of precipitates with a core-shell morphology (i.e., a δ core surrounded by a γ shell). A mechanism was also suggested to describe the formation of such core-shell precipitates, based on which an interfacial ribbon of ζ phase can also potentially form, surrounding the γ shell. In 2008, ζ phase was reported after the observation of unexpected electron diffraction patterns (DPs) and measurement of a plasmon energy (PE) value of 17.4 ± 0.2 eV for needle-shaped nanohydrides in Zircaloy-4. In this work, electron DPs of nanohydrides with similar morphology were characterized in several orientations, and it is shown that DPs previously interpreted as signatures of the ζ phase, in fact, can stem from the δ phase overlapped with either the α-Zr or a surface (probably zirconium-oxide) phase. This finding ruled out the formation of the interfacial ζ phase in our system. Moreover, electron energy-loss spectroscopy measurements revealed the existence of PE gradients across the interface between the α-Zr and δ core, including the PE values of the ζ and γ phases. The origin of the observed PE gradients was studied using electron diffraction and dielectric theory. It is suggested that the observed PE gradients likely stemmed from the delocalized nature of plasmon vibration and the variation of hydrogen concentration across the interface.

1.
Lanzani
L.
and
Ruch
M.
, “
Comments on the Stability of Zirconium Hydride Phases in Zircaloy
,”
Journal of Nuclear Materials
324
, nos.
2–3
(
2004
): 165–176.
2.
Tulk
E.
,
Kerr
M.
, and
Daymond
M. R.
, “
Study on the Effects of Matrix Yield Strength on Hydride Phase Stability in Zircaloy-2 and Zr 2.5Nb
,”
Journal of Nuclear Materials
425
, nos.
1–3
(
2012
): 93–104.
3.
Cann
C. D.
,
Puls
M. P.
,
Sexton
E. E.
, and
Hutchings
W. G.
, “
The Effect of Metallurgical Factors on Hydride Phases in Zirconium
,”
Journal of Nuclear Materials
126
, no.
3
(
1984
): 197–205.
4.
Zhao
Z.
,
Morniroli
J.
,
Legris
A.
,
Ambard
A.
,
Khin
Y.
,
Legras
L.
, and
Blat-Yrieix
M.
, “
Identification and Characterization of a New Zirconium Hydride
,”
Journal of Microscopy
232
, no.
3
(
2008
): 410–421.
5.
Carpenter
G. J.
C.
, “
The Precipitation of Gamma-Zr Hydride in Zr
,”
Acta Metallurgica
26
(
1978
): 1225–1235.
6.
McRae
G. A.
and
Coleman
C. E.
, “
Precipitates in Metals That Dissolve on Cooling and Form on Heating: An Example with Hydrogen in Alpha-Zirconium
,”
Journal of Nuclear Materials
499
(
2018
): 622–640.
7.
Gaskell
D. R.
and
Laughlin
D. E.
,
Introduction to the Thermodynamics of Materials
, 6th ed. (
Boca Raton, FL
:
CRC Press
,
2017
).
8.
Root
J. H.
,
Small
W. M.
,
Khatamian
D.
, and
Woo
O. T.
, “
Kinetics of the Delta to Gamma Zirconium Hydride Transformation in Zr-2.5Nb
,”
Acta Materialia
51
, no.
7
(
2003
): 2041–2053.
9.
Barrow
A. T.
W.
,
Korinek
A.
, and
Daymond
M. R.
, “
Evaluating Zirconium–Zirconium Hydride Interfacial Strains by Nano-Beam Electron Diffraction
,”
Journal of Nuclear Materials
432
, nos.
1–3
(
2013
): 366–370.
10.
Breen
A. J.
,
Mouton
I.
,
Lu
W.
,
Wang
S.
,
Szczepaniak
A.
,
Kontis
P.
,
Stephenson
L. T.
 et al
, “
Atomic Scale Analysis of Grain Boundary Deuteride Growth Front in Zircaloy-4
,”
Scripta Materialia
156
(
2018
): 42–46.
11.
Xu
F.
,
Holt
R. A.
,
Daymond
M. R.
,
Rogge
R. B.
, and
Oliver
E. C.
, “
Development of Internal Strains in Textured Zircaloy-2 during Uni-Axial Deformation
,”
Materials Science and Engineering: A
488
, nos.
1–2
(
2008
): 172–185.
12.
Long
F.
,
Xu
F.
, and
Daymond
M. R.
, “
Temperature Dependence of the Activity of Deformation Modes in an HCP Zirconium Alloy
,”
Metallurgical and Materials Transactions A
44
, no.
9
(
2013
): 4183–4193.
13.
Lepage
A.
,
Ferris
W.
, and
Ledoux
G.
, Procedure for Adding Hydrogen to Small Sections of Zirconium Alloys, FC-IAEA-03, T1.20.13-CAN-27363-03 (Chalk River:
Atomic Energy of Canada Limited
,
1998
).
14.
Motta
A. T.
,
Capolungo
L.
,
Chen
L.-Q.
,
Nedim Cinbiz
M.
,
Daymond
M. R.
,
Koss
D. A.
,
Lacroix
E.
 et al
, “
Hydrogen in Zirconium Alloys: A Review
,”
Journal of Nuclear Materials
518
(
2019
): 440–460.
15.
Zhao
Z.
,
Blat-Yrieix
M.
,
Morniroli
J.-P.
,
Legris
A.
,
Thuinet
L.
,
Kihn
Y.
,
Ambard
A.
, and
Legras
L.
, “
Characterization of Zirconium Hydrides and Phase Field Approach to a Mesoscopic-Scale Modeling of Their Precipitation
,”
Journal of ASTM International
5
, no.
3
(
2008
),
16.
Woo
O. T.
and
Carpenter
G. J.
C.
, “
EELS Characterization of Zirconium Hydrides
,”
Microscopy Microanalysis Microstructures
3
(
1992
): 35–44.
17.
Benner
G.
,
Niebel
H.
, and
Pavia
G.
, “
Nano Beam Diffraction and Precession in an Energy Filtered CS Corrected Transmission Electron Microscope
,”
Crystal Research & Technology
588
, no.
6
(
2011
): 580–588.
18.
De Graef
M.
,
Introduction to Conventional Transmission Electron Microscopy
(
Cambridge, UK
:
Cambridge University Press
,
2003
).
19.
Béché
A.
,
Rouvière
J. L.
,
Barnes
J. P.
, and
Cooper
D.
, “
Strain Measurement at the Nanoscale: Comparison between Convergent Beam Electron Diffraction, Nano-Beam Electron Diffraction, High Resolution Imaging and Dark Field Electron Holography
,”
Ultramicroscopy
131
(
2013
): 10–23.
20.
Long
F.
,
Badr
N. N.
,
Yao
Z.
, and
Daymond
M. R.
, “
Towards Resolving a Long Existing Phase Stability Controversy in the Zr-H, Ti-H Systems
,”
Journal of Nuclear Materials
543
(
2021
): 152540,
21.
Badr
N. N.
,
Long
F.
,
Topping
M.
,
Saidi
P.
,
Persaud
S.
,
Yao
Z.
, and
Daymond
M. R.
, “
Crystal Structure of Hydride Platelets in Hot Rolled Zircaloy-2, Characterized with Synchrotron X-Ray Diffraction, S/TEM, and EELS
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2019
), 732–761,
22.
Jostsons
A.
,
Kelly
P. M.
, and
Blake
R. G.
, “
The Nature of Dislocation Loops in Neutron Irradiated Zirconium
,”
Journal of Nuclear Materials
66
, no.
3
(
1977
): 236–256.
23.
Northwood
D. O.
,
Gilbert
R. W.
,
Bahen
L. E.
,
Kelly
P. M.
,
Blake
R. G.
,
Jostsons
A.
,
Madden
P. K.
,
Faulkner
D.
,
Bell
W.
, and
Adamson
R. B.
, “
Characterization of Neutron Irradiation Damage in Zirconium Alloys—An International ‘Round-Robin’ Experiment
,”
Journal of Nuclear Materials
79
, no.
2
(
1979
): 379–394.
24.
Chung
H. M.
, “
Phase Transformations in Neutron-Irradiated Zircaloys
(paper presentation, Thirteenth International Symposium on Effects of Radiation on Materials,
Seattle, WA
June 23,
1986
).
25.
McCullough
J. D.
and
Trueblood
K. N.
, “
The Crystal Structure of Baddeleyite (Monoclinic ZrO2)
,”
Acta Crystallography
12
, no.
7
(
1959
): 507–511.
26.
Luo
X.
,
Zhou
W.
,
Ushakov
S. V.
,
Navrotsky
A.
, and
Demkov
A. A.
, “
Monoclinic to Tetragonal Transformations in Hafnia and Zirconia: A Combined Calorimetric and Density Functional Study
,”
Physical Review B: Condensed Matter and Materials Physics
80
, no.
13
(
2009
): 1–13.
27.
Weatherly
G. C.
, “
The Precipitation of Gamma-Hydride Plates in Zirconium
,”
Acta Metallography
29
(
1980
): 501–512.
28.
Hanlon
S. M.
,
Persaud
S. Y.
,
Long
F.
,
Korinek
A.
, and
Daymond
M. R.
, “
A Solution to FIB Induced Artefact Hydrides in Zr Alloys
,”
Journal of Nuclear Materials
515
(
2019
): 122–134.
29.
Badr
N. N.
,
Long
F.
,
Lou
Y.
,
Topping
M.
,
Yao
Z.
, and
Daymond
M. R.
, “
On the Trigonal Structure of the ζ-Hydride in Zirconium: A Microstructural Characterization Approach by the Electron Diffraction and Energy-Loss Spectroscopy
,”
Acta Materialia
247
(
2023
),
30.
Schober
T.
and
Westlake
D.
, “
New Techniques for Electropolishing Nb, Ta, Zr, and Ti for Transmission Electron Microscopy
,”
Metallography
14
(
1981
): 359–362.
31.
Kestel
B. J.
, “
Non-Acid Electrolyte Thins Many Materials for TEM without Causing Hydride Formation
,”
Ultramicroscopy
19
, no.
2
(
1986
): 205–211.
32.
Chung
H.
,
Daum
R.
,
Hiller
J.
, and
Billone
M.
, “
Characteristics of Hydride Precipitation and Reorientation in Spent-Fuel Cladding
,” in
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ed.
Moan
G. D.
and
Rudling
P.
(
West Conshocken, PA
:
ASTM International
,
2002
), 561–582,
33.
Perovic
V.
,
Weatherly
G. C.
, and
Simpson
C. J.
, “
Hydride Precipitation in α/β Zirconium Alloys
,”
Acta Metallography
31
, no.
9
(
1983
): 1381–1391.
34.
Motta
A. T.
and
Chen
L. Q.
, “
Hydride Formation in Zirconium Alloys
,”
Journal of Microscopy
64
, no.
12
(
2012
): 1403–1408.
35.
Christensen
M.
,
Wolf
W.
,
Freeman
C.
,
Wimmer
E.
,
Adamson
R. B.
,
Hallstadius
L.
,
Cantonwine
P. E.
, and
Mader
E. V.
, “
H in α-Zr and in Zirconium Hydrides: Solubility, Effect on Dimensional Changes, and the Role of Defects
,”
Journal of Physics: Condensed Matter
27
, no.
2
(
2015
): 025402,
36.
Huang
G. Y.
and
Wirth
B. D.
, “
First-Principles Study of Interfacial Energy between Alpha-Zirconium and Zirconium Hydride
,”
Journal of Applied Physics
126
, no.
13
(
2019
): 135105,
37.
Blackmur
M. S.
,
Dumbill
S.
,
Maclaren
I.
,
Hernandez-Maldonado
D.
,
Styman
P. D.
,
Gass
M.
,
Nicholls
R. J.
 et al
, “
The Association of Hydrogen with Nanometre Bubbles of Helium Implanted into Zirconium
,”
Scripta Materialia
152
(
2018
): 102–106.
38.
Maclean
E. D.
W.
, “
Valence Losses at Interfaces in Aluminium Alloys
” (PhD diss.,
University of Glasgow
,
2002
).
39.
Howie
A.
and
Milne
R. H.
, “
Electron Energy Loss Spectra and Reflection Images from Surfaces
,”
Journal of Microscopy
136
, no.
2
(
1984
): 279–285.
40.
Tunes
M. A.
,
Silva
C. M.
, and
Edmondson
P. D.
, “
Site Specific Dependencies of Hydrogen Concentrations in Zirconium Hydrides
,”
Scripta Materialia
158
(
2019
): 136–140.
41.
Williams
D. B.
and
Edington
J. W.
, “
High Resolution Microanalysis in Materials Science Using Electron Energy Loss Measurements
,”
Journal of Microscopy
108
(
1976
): 113–145.
42.
Leitch
B. W.
and
Puls
M. P.
, “
Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic-Plastic Matrix
,”
Metallurgical Transactions A
23
(
1992
): 797–806.
43.
Cinbiz
M. N.
,
Koss
D. A.
,
Motta
A. T.
,
Park
J. S.
, and
Almer
J. D.
, “
In Situ Synchrotron X-Ray Diffraction Study of Hydrides in Zircaloy-4 during Thermomechanical Cycling
,”
Journal of Nuclear Materials
487
(
2017
): 247–259.
44.
Singh
R. N.
,
Khandelwal
H. K.
,
Bind
A. K.
,
Sunil
S.
, and
Ståhle
P.
, “
Influence of Stress Field of Expanding and Contracting Plate Shaped Precipitate on Hydride Embrittlement of Zr-Alloys
,”
Materials Science and Engineering: A
579
(
2013
): 157–163.
45.
Puls
M. P.
, “
Review of the Thermodynamic Basis for Models of Delayed Hydride Cracking Rate in Zirconium Alloys
,”
Journal of Nuclear Materials
393
, no.
2
(
2009
): 350–367.
46.
Egerton
R. F.
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
New York, NY
:
Springer
,
2011
).
47.
Howie
A.
and
Milne
R. H.
, “
Excitations at Interfaces and Small Particles
,”
Ultramicroscopy
18
(
1985
): 427–434.
48.
Meng
Q.
,
Wu
L.
,
Xin
H. L.
, and
Zhu
Y.
, “
Retrieving the Energy-Loss Function from Valence Electron Energy-Loss Spectrum: Separation of Bulk-, Surface-Losses and Cherenkov Radiation
,”
Ultramicroscopy
194
(
2018
): 175–181.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal