Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Based on the M5Framatome alloy metallurgy, several Zr1NbxSnyFe alloys were developed to make structural components, with ultra-low tin addition and slightly increased iron content (Sn = 0, 0.3, and 0.5 wt.%; Fe = 1,000 and 2,000 wt. ppm). This paper details the microstructure of five different alloys, including M5Framatome and Q12, and their microstructural evolution after neutron irradiation, in the same campaign, as fuel rods in a PWR up to high fluence. Previous studies have detailed microstructural changes of zirconium alloys under irradiation and have underlined the influence of these changes on oxidation behavior, mechanical properties, creep, and growth. The presence of tin and iron (by iron dissolution out of the precipitates) in the matrix is suspected to influence the irradiation-induced microstructural features such as <a>-loop alignments (corduroys) and size, <c>-component loop nucleation, and “needle like” β-Nb precipitate spatial distribution and size. Relevant microstructural observations are needed to decorrelate the tin's influence from that of the iron on the microstructural changes under irradiation in alloys containing niobium, tin, and iron. In this study, the comparison between M5Framatome and the Zr1Nb0.1Fe alloy has determined the influence of iron on alloys without tin. The effect of iron at a fixed tin content was obtained by comparing Zr1Nb0.3Sn0.1Fe and Zr1Nb0.3Sn0.2Fe alloys. Finally, the comparison of Zr1Nb0.1Fe, Zr1Nb0.3Sn0.1Fe, and Q12 (Zr-1Nb0.5Sn0.1Fe) alloys addressed the effect of different tin contents with the same iron content. The microstructural features were studied on all five alloys for fast neutron fluences up to 13 × 1025 n/m2(E > 1 MeV) with analytical transmission electron microscopy. Significant differences were brought out, particularly concerning the <a>-loop distribution, the Laves phase dissolution, and the <c>-component loop linear density and spatial distribution. All of these results prompt a reconsideration of the influence of iron and tin contents on microstructural evolution under irradiation of Zr1NbxSnyFe alloys.

1.
Chabretou
V.
,
Hoffmann
P. B.
,
Trapp-Pritsching
S.
,
Garner
G.
,
Barberis
P.
,
Reyberolle
V.
, and
Vermoyal
J. J.
, “
Ultra Low Tin Quaternary Alloys PWR Performance—Impact of Tin Content on Corrosion Resistance, Irradiation Growth and Mechanical Properties
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2012
), 801–826,
2.
Chabretou
V.
and
Trapp-Pritsching
S.
, “
Q12 Ultra Low Tin Quaternary Alloy for Structural Components in PWR Fuel Assemblies
” (paper presentation, Topfuel 2015,
Zurich, Switzerland
, September 17–18,
2015
).
3.
Yagnik
S.
,
Adamson
R.
,
Kobylyansky
G.
,
Chen
J. H.
,
Gilbon
D.
,
Ishimoto
S.
,
Fukuda
T.
,
Hallstadius
L.
,
Obukhov
A.
, and
Mahmood
S.
, “
Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation Induced Growth Behavior of Zirconium Alloy Variants
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. J.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 748–795,
4.
Shishov
V. N.
, “
The Evolution of Microstructure and Deformation Stability in Zr-Nb-(Sn,Fe) Alloys under Neutron Irradiation
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2012
), 37–66,
5.
Gilbon
D.
,
Soniak
A.
,
Doriot
S.
, and
Mardon
J. P.
, “
Irradiation Creep and Growth Behaviour, and Microstructural Evolution of Advanced Zr-Base Alloys
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 51–73,
6.
Doriot
S.
,
Gilbon
D.
,
Béchade
J. L.
,
Mathon
M. H.
,
Legras
L.
, and
Mardon
J. P.
, “
Microstructural Stability of M5™ Alloy Irradiated up to High Neutron Fluences
,” in
Zirconium in the Nuclear Industry: Fourteenth International Symposium
, ed.
Rudling
Peter
and
Kammenzind
Bruce
(
West Conshohocken, PA
:
ASTM International
,
2006
), 175–201,
7.
Doriot
S.
,
Verhaeghe
B.
,
Béchade
J. L.
,
Menut
D.
,
Gilbon
D.
,
Mardon
J. P.
,
Cloué
J. M.
,
Miquet
A.
, and
Legras
L.
, “
Microstructural Evolution of M5 Alloy Irradiated in PWRs up to High Fluences—Comparison with Other Zr-Based Alloys
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
Pierre
(
West Conshohocken, PA
:
ASTM International
,
2015
), 759–799,
8.
Francis
E. M.
,
Harte
A.
,
Frankel
P.
,
Haigh
S. J.
,
Jädernäs
D.
,
Romero
J.
,
Hallstadius
L.
, and
Preuss
M.
, “
Iron Redistribution in a Zirconium Alloy after Neutron and Proton Irradiation Studied by Energy-Dispersive X-Ray Spectroscopy (EDX) Using an Aberration-Corrected (Scanning) Transmission Electron Microscope
,”
Journal of Nuclear Materials
454
(
2014
): 387–397,
9.
Griffiths
M.
,
de Carlan
Y.
,
Lefebvre-Joud
F.
, and
Lemaignan
C.
, “
A TEM Study of the Stability of Intermetallic Precipitates in Zircaloy Nuclear Reactor Components
,”
Micron
26
, no.
6
(
1995
): 551–553.
10.
Griffiths
M.
, “
A Review of Microstructure Evolution in Zirconium Alloys during Irradiation
,”
Journal of Nuclear Materials
159
(
1988
): 190–218.
11.
Doriot
S.
,
Verhaeghe
B.
,
Soniak-Defresne
A.
,
Bossis
P.
,
Gilbon
D.
,
Chabretou
V.
,
Mardon
J. P.
,
Ton-That
M.
, and
Ambard
A.
, “
Microstructural Evolution of Q12 Alloy Irradiated in PWRs and Comparison with Other Zr Base Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2017
), 825–858,
12.
Shishov
V. N.
,
Nikulina
A. V.
,
Markelov
V. A.
,
Peregud
M. M.
,
Kozlov
A. V.
,
Averin
S. A.
,
Kolbenkov
S. A.
, and
Novoselov
A. E.
, “
Influence of Neutron Irradiation and Dislocation Structure and Phase Composition of Zr-Base Alloys
,” in
Zirconium in the Nuclear Industry: 11th International Symposium
ed.
Bradley
E. R.
and
Sabol
G. P.
(
West Conshohocken, PA
:
ASTM International
,
1996
), 603–622,
13.
Andersson
J. O.
,
Helander
T.
,
Hoglund
L.
,
Shi
P. F.
, and
Sundman
B.
, “
Thermo-Calc & DICTRA, Computational Tools for Materials Science
,”
Calphad
26
(
2002
): 273–312.
14.
Dupin
N.
,
Ansara
I.
,
Servant
C.
,
Toffolon
C.
,
Lemaignan
C.
, and
Brachet
J. C.
, “
Thermodynamic Database for Zirconium Alloys
,”
Journal of Nuclear Materials
275
(
1999
): 287–295.
15.
Lukas
H. L.
,
Fries
S. G.
, and
Sundman
B.
,
Computational Thermodynamics—The Calphad Method
, 1st ed. (
Cambridge, UK
:
Cambridge University Press
,
2007
).
16.
Harte
A.
,
Jädernäs
D.
,
Topping
M.
,
Frankel
P.
,
Race
C. P.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
The Effect of Matrix Chemistry on Dislocation Evolution in an Irradiated Zr Alloy
,”
Acta Materialia
130
(
2017
): 69–82,
17.
Jenkins
B. M.
,
Haley
J.
,
Moody
M. P.
,
Hyde
J. M.
, and
Grovenor
C. R.
M.
, “
APT and TEM Study of Behaviour of Alloying Elements in Neutron-Irradiated Zirconium-Based Alloys
,”
Scripta Materialia
208
(
2022
): 11432,
18.
Francis
E.
,
Prasath Babu
R.
,
Harte
A.
,
Martin
T. L.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
 et al
, “
Effect of Nb and Fe on Damage Volution in a Zr-Alloy during Proton and Neutron Irradiation
,”
Acta Materiala
165
(
2019
): 603–614,
19.
Motta
A. T.
,
Howe
L. M.
, and
Okamoto
P. R.
, “
Amorphisation Kinetics of Zr(Cr,Fe)2 under Ions Irradiation
,” in
Beam-Solid Interactions: Volume 279: Fundamentals and Applications
, ed.
Averback
R. S.
,
Harriott
L. R.
,
Herbots
N.
, and
Nastasi
M.
(
Warrendale, PA
:
Materials Research Society
,
1993
), 517–522.
20.
Pêcheur
D.
,
Lefebvre
F.
,
Motta
A. T.
,
Lemaignan
C.
, and
Charquet
D.
, “
Effect of Irradiation on the Precipitate Stability in Zr Alloys
,”
Journal of Nuclear Materials
205
(
1993
): 445–451.
21.
Idrees
Y.
,
Francis
E. M.
,
Yao
Z.
,
Korinek
A.
,
Kirk
M. A.
,
Sattari
M.
,
Preuss
M.
, and
Daymond
M. R.
, “
Effect of Alloying Elements on the Formation of <c>-Component Loops in Zr Alloy Excel under Heavy Ion Irradiation
,”
Journal of Material Research
30
, no.
9
(
2015
): 1310–1334,
22.
Markelov
V. A.
,
Novikov
V.
,
Sheviakov
A.
,
Gusev
A.
,
Peregud
M.
,
Konkov
V.
,
Eremin
S.
,
Pokrovsky
A.
, and
Obukhov
A.
, “
Preliminary Irradiation Effect on Corrosion Resistance of Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 857–880,
23.
Kaczorowski
D.
,
Mardon
J. P.
,
Barberis
P.
,
Hoffmann
P. B.
, and
Stevens
J.
, “
Impact of Iron in M5™
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 159–183,
24.
He
G.
,
Liu
J.
,
Li
K.
,
Hu
J.
,
Mir
A. H.
,
Lozano-Perez
S.
, and
Grovenor
C.
, “
Investigating the Stability of Second Phase Particles in Zr-Nb Alloys under Irradiation
,”
Journal of Nuclear Materials
526
(
2019
): 151738,
25.
Coleman
C. E.
,
Gilbert
R. W.
,
Carpenter
G. J.
C.
, and
Weatherly
G. C.
, “
Precipitation in Zr-2.5 wt% Nb during Neutron Irradiation
,” in
Phase Stability During Irradiation
, ed.
Potter
D. I.
,
Holland
J. R.
, and
Mansur
L. K.
(
Englewood, CO
:
The Metallurgical Society of AIME
,
1981
), 587–599.
26.
Perovic
V.
,
Perovic
A.
,
Weatherly
G. C.
,
Brown
L. M.
,
Purdy
G. R.
,
Fleck
R. G.
, and
Holt
R. A.
, “
Microstructural and Microchemical Studies of Zr-2.5Nb Pressure Tube Alloy
,”
Journal of Nuclear Materials
205
(
1993
): 251–257.
27.
Sarce
A.
, “
Stability of Precipitates in the Anisotropic β-Zr Matrix under Irradiation
,”
Journal of Nuclear Materials
185
(
1991
): 214–223.
28.
Turkin
A. A.
,
Buts
A. V.
, and
Bakai
A. S.
, “
Construction of Radiation-Modified Phase Diagrams under Cascade-Producing Irradiation
,”
Journal of Nuclear Materials
305
(
2002
): 134–152.
29.
Ribis
J.
,
Doriot
S.
, and
Onimus
F.
, “
Shape, Orientation Relationships and Interface Structure of Beta-Nb Nano-Particles in Neutron Irradiated Zirconium Alloy
,”
Journal of Nuclear Materials
511
(
2018
): 18–29,
30.
Zhou
L.
,
Li
S. X.
,
Chen
C. R.
,
Wang
Y. C.
,
Zang
Q. S.
, and
Lu
K.
, “
Three-Dimensional Finite Element Analysis of Stresses and Energy Density Distribution around γ′ before Coarsening Loaded in the [110]-Direction in Ni-Based Superalloy
,”
Materials Science and Engineering A
352
, nos.
1–2
(
2003
): 300–307.
31.
Averin
S. A.
,
Panchenko
V. L.
,
Kozlov
A. V.
,
Sinelnikov
L. P.
,
Shishov
V. N.
, and
Nikulina
A. V.
, “
Evolution of Dislocation and Precipitate Structure in Zr Alloys under Long-Term Irradiation
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 105–121,
32.
Doriot
S.
,
Onimus
F.
,
Gilbon
D.
,
Mardon
J. P.
, and
Bourlier
F.
, “
Transmission Electron Microscopy Study of Second Phase Particles Irradiated by 2MeV Protons at 350°C in Zr Alloys
,”
Journal of Nuclear Materials
494
(
2017
): 398–410,
33.
Tournadre
L.
,
Onimus
F.
,
Béchade
J. L.
,
Gilbon
D.
,
Cloué
J. M.
,
Mardon
J. P.
, and
Feaugas
X.
, “
Toward a Better Understanding of the Hydrogen Impact on the Radiation Induced Growth of Zirconium Alloys
,”
Journal of Nuclear Materials
441
, nos.
1–3
(
2013
): 222–231,
34.
Shen
H. H.
,
Peng
S. M.
,
Xiang
X.
,
Naab
F. N.
,
Sun
K.
, and
Zu
X. T.
, “
Proton Irradiation Effects on the Precipitate in a Zr–1.6Sn–0.6Nb–0.2Fe–0.1Cr Alloy
,”
Journal of Nuclear Materials
452
(
2014
): 335–342,
35.
Motta
A. T.
and
Lemaignan
C.
, “
A Ballistic Mixing Model for the Amorphization of Precipitates in Zircaloy under Neutron Irradiation
,”
Journal of Nuclear Materials
195
(
1992
): 277–285.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal