Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

During operation, structural components made of zirconium alloys are subject to neutron irradiation, which leads to the displacement of zirconium atoms from their lattice sites, the production of self-interstitials and vacancies, and eventually dislocation loops. This process can lead to deleterious effects such as irradiation growth, creep, and embrittlement as well as accelerated aqueous corrosion. Quantitative analysis of dislocation line densities is seen as an important pathway for distinguishing between the irradiation response of different alloys. The analysis of irradiation damage using X-ray diffraction (XRD) line-profile analysis has proven to be a powerful complementary technique to transmission electron microscopy, which samples a comparatively large volume and is less affected by the subjectivity of image analysis. In this paper we present and analyze three different types of XRD experiments, describing their purpose and the new insight achieved using each technique. First, we present work carried out on neutron-irradiated samples, comparing dislocation line densities measured by XRD with macroscopic growth measurements. A second experiment using a synchrotron-based X-ray microbeam enabled the mapping of dislocation line densities as a function of depth from the surface of proton-irradiated zirconium alloys. These data are compared with calculated damage profiles, providing new insight into the early saturation of damage. Finally, the last example presented here focuses on synchrotron-based 3D XRD measurements, for which dislocation-loop line densities were analyzed in hundreds of individual grains, providing excellent statistics about the grain-to-grain variability of line densities.

1.
Griffiths
M.
, “
A Review of Microstructure Evolution in Zirconium Alloys during Irradiation
,”
Journal of Nuclear Materials
159
(
1988
): 190–218,
2.
Topping
M.
,
Harte
A.
,
Ungár
T.
,
Race
C. P.
,
Dumbill
S.
,
Frankel
P.
, and
Preuss
M.
, “
The Effect of Irradiation Temperature on Damage Structures in Proton-Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
514
(
2019
): 358–367,
3.
Ungár
T.
,
Ribarik
G.
,
Topping
M.
,
Jones
R. M.
A.
,
Xu
X. D.
,
Hulse
R.
,
Harte
A.
 et al
, “
Characterizing Dislocation Loops in Irradiated Polycrystalline Zr Alloys by X-Ray Line Profile Analysis of Powder Diffraction Patterns with Satellites
,”
Journal of Applied Crystallography
54
(
2021
): 803–821,
4.
Seymour
T.
,
Frankel
P.
,
Balogh
L.
,
Ungár
T.
,
Thompson
S.P.
,
Jädernäs
D.
,
Romero
J.
 et al
, “
Evolution of Dislocation Structure in Neutron Irradiated Zircaloy-2 Studied by Synchrotron X-Ray Diffraction Peak Profile Analysis
,”
Acta Materiala
126
(
2017
): 102–113,
5.
Topping
M.
,
Ungár
T.
,
Race
C. P.
,
Harte
A.
,
Garner
A.
,
Baxter
F.
,
Dumbill
S.
,
Frankel
P.
, and
Preuss
M.
, “
Investigating the Thermal Stability of Irradiation-Induced Damage in a Zirconium Alloy with Novel In Situ Techniques
,”
Acta Materiala
145
(
2018
): 255–263,
6.
Ungár
T.
,
Frankel
P.
,
Ribárik
G.
,
Race
C. P.
, and
Preuss
M.
, “
Size-Distribution of Irradiation-Induced Dislocation-Loops in Materials Used in the Nuclear Industry
,”
Journal of Nuclear Materials
550
(
2021
): 152945,
7.
Balogh
L.
,
Brown
D. W.
,
Mosbrucker
P.
,
Long
F.
, and
Daymond
M. R.
, “
Dislocation Structure Evolution Induced by Irradiation and Plastic Deformation in the Zr-2.5Nb Nuclear Structural Material Determined by Neutron Diffraction Line Profile Analysis
,”
Acta Materiala
60
(
2012
): 5567–5577,
8.
Balogh
L.
,
Long
F.
, and
Daymond
M. R.
, “
Contrast Factors of Irradiation-Induced Dislocation Loops in Hexagonal Materials
,”
Journal of Applied Crystallography
49
(
2016
): 2184–2200,
9.
Harte
A.
,
Topping
M.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
Nanoscale Chemical Evolution in a Proton- and Neutron-Irradiated Zr Alloy
,”
Journal of Nuclear Materials
487
(
2017
): 30–42,
10.
Adamson
R. B.
,
Coleman
C. E.
, and
Griffiths
M.
, “
Irradiation Creep and Growth of Zirconium Alloys: A Critical Review
,”
Journal of Nuclear Materials
521
(
2019
): 167–244,
11.
Adrych-Brunning
A.
and
Race
C. P.
, “
The Interaction of Proton Irradiation with Zr Textured Microstructure
,”
Journal of Nuclear Materials
547
(
2021
): 152808,
12.
Yagnik
S.
,
Adamson
R. B.
,
Kobylyansky
G.
,
Chen
J. H.
,
Gilbon
D.
,
Ishimoto
S.
,
Fukuda
T.
,
Hallstadius
L.
,
Obukhov
A.
, and
Mahmood
S.
, “
Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R.
and
Motta
A.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 748–795,
13.
Walters
L.
,
Douglas
S. R.
, and
Griffiths
M.
, “
Equivalent Radiation Damage in Zirconium Irradiated in Various Reactors
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R.
and
Motta
A.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 676–690,
14.
Stoller
R. E.
,
Toloczko
M. B.
,
Was
G. S.
,
Certain
A. G.
,
Dwaraknath
S.
, and
Garner
F. A.
, “
On the Use of SRIM for Computing Radiation Damage Exposure
,”
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
310
(
2013
): 75–80,
15.
Ziegler
J. F.
,
Ziegler
M. D.
, and
Biersack
J. P.
, “
SRIM—The Stopping and Range of Ions in Matter (2010)
,
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
268
(
2010
): 1818–1823,
16.
Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation
, ASTM E521-16 (
West Conshohocken, PA
:
ASTM International
, approved October 1,
2016
),
17.
Ungár
T.
,
Ribárik
G.
,
Zilahi
G.
,
Mulay
R.
,
Lienert
U.
,
Balogh
L.
, and
Agnew
S.
, “
Slip Systems and Dislocation Densities in Individual Grains of Polycrystalline Aggregates of Plastically Deformed CoTi and CoZr Alloys
,”
Acta Materialia
71
(
2014
): 264–282,
18.
Warren
B. E.
, “
X-Ray Studies of Deformed Metals
,”
Progress in Metal Physics
8
(
1959
): 147–202,
19.
Ungár
T.
,
Dragomir
I.
,
Révész
Á.
, and
Borbély
A.
, “
The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice
,”
Journal of Applied Crystallography
32
(
1999
): 992–1002,
20.
Ribárik
G.
,
Jóni
B.
, and
Ungár
T.
, “
Global Optimum of Microstructure Parameters in the CMWP Line-Profile-Analysis Method by Combining Marquardt-Levenberg and Monte-Carlo Procedures
,”
Journal of Materials Science & Technology
35
(
2019
): 1508–1514,
21.
Krivoglaz
M. A.
,
X-Ray and Neutron Diffraction in Nonideal Crystals
, 1st ed. (
Berlin, Germany
:
Springer-Verlag Berlin Heidelberg
,
1996
).
22.
Wilkens
M.
, “
Theoretical Aspects of Kinematical X-Ray Diffraction Profiles from Crystals Containing Dislocation Distributions
,” in
Fundamental Aspects of Dislocation Theory
, 2nd ed., ed.
Simmons
J. A.
,
Bullough
R.
and
DeWit
R.
(
Washington, DC
:
U.S. Government Printing Office
,
1970
), 1195–1221.
23.
Ungár
T.
,
Ribárik
G.
,
Balogh
L.
,
Thomas
R.
,
Koc
O.
,
Race
C. P.
,
Preuss
M.
, and
Frankel
P.
, “
Partial Dislocation Densities of Dislocation Loops and Lattice Dislocations in Neutron or Proton Irradiated Zr Alloys
” (in review).
24.
Ribárik
G.
,
Jóni
B.
, and
Ungár
T.
, “
The Convolutional Multiple Whole Profile (CMWP) Fitting Method, a Global Optimization Procedure for Microstructure Determination
,”
Crystals
10
(
2020
): 623,
25.
Cockeram
B. V.
,
Leonard
K. J.
,
Byun
T. S.
,
Snead
L. L.
, and
Hollenbeck
J. L.
, “
Development of Microstructure and Irradiation Hardening of Zircaloy during Low Dose Neutron Irradiation at Nominally 377–440°C
,”
Journal of Nuclear Materials
449
(
2014
): 69–87,
26.
Cockeram
B. V.
,
Smith
R. W.
,
Leonard
K. J.
,
Byun
T. S.
, and
Snead
L. L.
, “
Development of Microstructure and Irradiation Hardening of Zircaloy during Low Dose Neutron Irradiation at Nominally 358°C
,”
Journal of Nuclear Materials
418
(
2011
): 46–61,
27.
Farrell
K.
,
Byun
T. S.
, and
Hashimoto
N.
, “
Deformation Mode Maps for Tensile Deformation of Neutron-Irradiated Structural Alloys
,”
Journal of Nuclear Materials
335
(
2004
): 471–486,
28.
Northwood
D. O.
,
Gilbert
R. W.
,
Bahen
L. E.
,
Kelly
P. M.
,
Blake
R. G.
,
Jostsons
A.
,
Madden
P. K.
,
Faulkner
D.
,
Bell
W.
, and
Adamson
R. B.
, “
Characterization of Neutron Irradiation Damage in Zirconium Alloys–An International “Round-Robin” Experiment
,”
Journal of Nuclear Materials
79
(
1979
): 379–394,
29.
Jostsons
A.
,
Kelly
P. M.
, and
Blake
R. G.
, “
The Nature of Dislocation Loops in Neutron Irradiated Zirconium
,”
Journal of Nuclear Materials
66
(
1977
): 236–256,
30.
Kelly
P. M.
and
Blake
R. G.
, “
The Characterization of Dislocation Loops in Neutron Irradiated Zirconium
,”
The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics
28
(
1973
): 415–426,
31.
Thomas
R.
,
Lunt
D.
,
Atkinson
M. D.
,
Quinta da Fonseca
J.
,
Preuss
M.
,
Barton
F.
,
O’Hanlon
J.
, and
Frankel
P.
, “
The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloy
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2020
), 233–261,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal