Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Zirconium oxide formed in high-temperature water conditions is highly heterogeneous in nature, with, for instance, the presence of a high density of grain boundaries and nanopores, secondary-phase precipitates, and microchemical segregations. Irradiation exacerbates these heterogeneities with effects such as radiation-induced segregation and precipitate dissolution/amorphization. The transport of species through the oxide is affected by these heterogeneities, resulting in complex transport mechanisms that are still not well understood. In this study, we focused on chemical heterogeneities in the oxide, specifically the oxide/metal (O/M) interface and how alloying elements are redistributed across the interface as it progresses into the substrate. For the first time, in situ atom probe tomography (APT) experiments, in which the APT needle is oxidized prior to analysis, have been performed on unirradiated and 1-dpa proton-irradiated Zr-Nb-Fe model alloys to characterize chemical redistribution as a function of oxidation temperature and time across the O/M interface. Results show that the niobium and iron contents in the oxide are higher than what can be accounted for only with solute capture. This finding suggests that there is a thermodynamic driving force for the niobium and iron solutes to migrate from the metal into the oxide in the unirradiated system. Under irradiation, niobium-rich irradiation-induced nanoclusters form in the metal matrix, and the iron and niobium solutes are more thermodynamically stable relative to the unirradiated system. We found much less niobium and iron in the oxide formed in the irradiated sample, corroborating the finding that the substrate is more thermodynamically stable. This finding has strong implications relative to unirradiated versus irradiated Zr-Nb oxidation kinetics because niobium solute doping in the oxide is known to significantly affect the alloy oxidation rate.

1.
Motta
A. T.
,
Couette
A.
, and
Comstock
R. J.
, “
Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding
,”
Annual Review of Materials Research
45
(
2015
): 311–343.
2.
Hillner
E.
, “
Corrosion of Zirconium-Base Alloys—An Overview
,” in
Zirconium in the Nuclear Industry
, ed.
Lowe
A. L.
 Jr.
and
Parry
G. W.
(
West Conshohocken, PA
:
ASTM International
,
1977
), 211–235,
3.
Abriata
J. P.
and
Bolcich
J. C.
, “
The Nb-Zr (Niobium-Zirconium) System
,”
Bulletin of Alloy Phase Diagrams
3
(
1982
): 34–44.
4.
Lu
H.-J.
,
Zou
N.
,
Zhao
X.-S.
,
Shen
J.-Y.
,
Lu
X.-G.
, and
He
Y.-L.
, “
Thermodynamic Investigation of the Zr-Fe-Nb System and Its Applications
,”
Intermetallics
88
(
2017
): 91–100.
5.
Shishov
V. N.
, “
The Evolution of Microstructure and Deformation Stability in Zr-Nb-(Sn,Fe) Alloys under Neutron Irradiation
,” in
Zirconium Production and Technology: The Kroll Medal Papers 1975–2010
, ed.
Adamson
R. B.
(
West Conshohocken, PA
:
ASTM International
,
2010
), 479–500,
6.
Verlet
R.
, “
Influence of Irridiation and Radiolysis on the Oxidation Kinetics and Mechanisms of Zirconium Alloys
” (PhD diss.,
Ecole Nationale Supérieure des Mines de Saint-Etienne
,
2015
).
7.
Urbanic
V. F.
,
Lesurf
J. E.
, and
Johnson
A. B.
, “
Effect of Aging and Irradiation on the Corrosion of Zr-2.5 Wt% Nb
,”
Corrosion
31
(
1975
): 15–20.
8.
Wang
P.
and
Was
G. S.
, “
Oxidation of Zircaloy-4 during In Situ Proton Irradiation and Corrosion in PWR Primary Water
,”
Journal of Materials Research
30
(
2015
): 1335–1348.
9.
Reyes
M.
,
Wang
P.
,
Was
G.
, and
Marian
J.
, “
Determination of Dose Rate Effects on Zircaloy Oxidation Using Proton Irradiation and Oxygen Transport Modeling
,”
Journal of Nuclear Materials
523
(
2019
): 56–65.
10.
Hu
J.
,
Garner
A.
,
Frankel
P.
,
Li
M.
,
Kirk
M. A.
,
Lozano-Perez
S.
,
Preuss
M.
, and
Grovenor
C.
, “
Effect of Neutron and Ion Irradiation on the Metal Matrix and Oxide Corrosion Layer on Zr-1.0Nb Cladding Alloys
,”
Acta Materialia
173
(
2019
): 313–326.
11.
Yuan
R.
,
Xie
Y.-P.
,
Li
T.
,
Xu
C.-H.
,
Yao
M.-Y.
,
Xu
J.-X.
,
Guo
H.-B.
, and
Zhou
B.-X.
, “
An Origin of Corrosion Resistance Changes of Zr Alloys: Effects of Sn and Nb on Grain Boundary Strength of Surface Oxide
,”
Acta Materialia
209
(
2021
): 116804,
12.
Hu
J.
,
Setiadinata
B.
,
Aarholt
T.
,
Garner
A.
,
Vilalta-Clemente
A.
,
Partezana
J. M.
,
Frankel
P.
 et al
, “
Understanding Corrosion and Hydrogen Pickup of Zirconium Fuel Cladding Alloys: The Role of Oxide Microstructure, Porosity, Suboxides, and Second-Phase Particles
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R.
and
Motta
A.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 93–126,
13.
Couet
A.
,
Motta
A. T.
, and
Ambard
A.
, “
The Coupled Current Charge Compensation Model for Zirconium Alloy Fuel Cladding Oxidation: I. Parabolic Oxidation of Zirconium Alloys
,”
Corrosion Science
100
(
2015
): 73–84.
14.
Moorehead
M.
,
Yu
Z.
,
Borrel
L.
,
Hu
J.
,
Cai
Z.
, and
Couet
A.
, “
Comprehensive Investigation of the Role of Nb on the Oxidation Kinetics of Zr-Nb Alloys
,”
Corrosion Science
155
(
2019
): 173–181.
15.
Couet
A.
,
Motta
A. T.
,
Ambard
A.
, and
Livigni
D.
, “
In-Situ Electrochemical Impedance Spectroscopy Measurements of Zirconium Alloy Oxide Conductivity: Relationship to Hydrogen Pickup
,”
Corrosion Science
119
(
2017
): 1–13.
16.
Yu
Z.
,
Zhang
C.
,
Voyles
P. M.
,
He
L.
,
Liu
X.
,
Nygren
K.
, and
Couet
A.
, “
Microstructure and Microchemistry Study of Irradiation-Induced Precipitates in Proton Irradiated ZrNb Alloys
,”
Acta Materialia
178
(
2019
): 228–240.
17.
Sherman
Q. C.
,
Voorhees
P. W.
, and
Marks
L. D.
, “
Thermodynamics of Solute Capture during the Oxidation of Multicomponent Metals
,”
Acta Materialia
181
(
2019
): 584–594.
18.
Yu
X.
,
Gulec
A.
,
Sherman
Q.
,
Cwalina
K. L.
,
Scully
J. R.
,
Perepezko
J. H.
,
Voorhees
P. W.
, and
Marks
L. D.
, “
Nonequilibrium Solute Capture in Passivating Oxide Films
,”
Physical Review Letters
121
(
2018
): 145701,
19.
Kautz
E. J.
,
Gwalani
B.
,
Lambeets
S. V.
M.
,
Kovarik
L.
,
Schreiber
D. K.
,
Perea
D. E.
,
Senor
D.
 et al
, “
Rapid Assessment of Structural and Compositional Changes during Early Stages of Zirconium Alloy Oxidation
,”
npj Materials Degradation
4
(
2020
): 29,
20.
Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation
, ASTM E521-96 (
West Conshohocken, PA
:
ASTM International
, approved January 10,
1996
),
21.
Stoller
R. E.
,
Toloczko
M. B.
,
Was
G. S.
,
Certain
A. G.
,
Dwaraknath
S.
, and
Garner
F. A.
, “
On the Use of SRIM for Computing Radiation Damage Exposure
,”
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
310
(
2013
): 75–80.
22.
Yu
Z.
,
Couet
A.
, and
Bachhav
M.
, “
Irradiation-Induced Nb Redistribution of ZrNb Alloy: An APT Study
,”
Journal of Nuclear Materials
516
(
2019
): 100–110.
23.
Yu
Z.
,
Kim
T.
,
Bachhav
M.
,
Liu
X.
,
He
L.
, and
Couet
A.
, “
Effect of Proton Pre-Irradiation on Corrosion of Zr-0.5Nb Model Alloys with Different Nb Distributions
,”
Corrosion Science
173
(
2020
): 108790,
24.
Thompson
K.
,
Lawrence
D.
,
Larson
D. J.
,
Olson
J. D.
,
Kelly
T. F.
, and
Gorman
B.
, “
In Situ Site-Specific Specimen Preparation for Atom Probe Tomography
,”
Ultramicroscopy
107
(
2007
): 131–139.
25.
Lambeets
S. V.
,
Kautz
E. J.
,
Wirth
M. G.
,
Orren
G. J.
,
Devaraj
A.
, and
Perea
D. E.
, “
Nanoscale Perspectives of Metal Degradation via In Situ Atom Probe Tomography
,”
Topics in Catalysis
63
(
2020
): 1606–1622,
26.
Miller
M. K.
and
Forbes
R. G.
,
Atom-Probe Tomography: The Local Electrode Atom Probe
(
New York, NY
:
Springer
,
2014
).
27.
Bachhav
M.
,
Pawar
G.
,
Vurpillot
F.
,
Danoix
R.
,
Danoix
F.
,
Hannoyer
B.
,
Dong
Y.
, and
Marquis
E.
, “
Interpreting the Presence of an Additional Oxide Layer in Analysis of Metal Oxides-Metal Interfaces in Atom Probe Tomography
,”
Journal of Physical Chemistry C
123
(
2019
): 1313–1319.
28.
Setiadinata
S. B.
, “
Corrosion and Hydrogen Pickup Mechanisms of Zirconium Alloys
” (PhD thesis,
University of Oxford
,
2016
).
29.
Hudson
D.
, “
Zirconium Oxidation on the Atomic Scale
” (PhD thesis,
University of Oxford
,
2010
).
30.
Francis
E.
,
Babu
R. P.
,
Harte
A.
,
Martin
T. L.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
 et al
, “
Effect of Nb and Fe on Damage Evolution in a Zr-Alloy during Proton and Neutron Irradiation
,”
Acta Materialia
165
(
2019
): 603–614.
31.
Francis
E. M.
,
Harte
A.
,
Frankel
P.
,
Haigh
S. J.
,
Jädernäs
D.
,
Romero
J.
,
Hallstadius
L.
, and
Preuss
M.
, “
Iron Redistribution in a Zirconium Alloy after Neutron and Proton Irradiation Studied by Energy-Dispersive X-Ray Spectroscopy (EDX) Using an Aberration-Corrected (Scanning) Transmission Electron Microscope
,”
Journal of Nuclear Materials
454
(
2014
): 387–397.
32.
Griffiths
M.
,
Mecke
J. F.
, and
Winegar
J. E.
, “
Evolution of Microstructure in Zirconium Alloys during Irradiation
,”
IAEA
,
1997
, https://web.archive.org/web/20221025143927/https://inis.iaea.org/search/search.aspx?orig_q=RN:34069177
33.
Ensor
B.
, “
The Nature of Unstable Oxide Growth in Zirconium and Zirconium Alloys
” (PhD diss.,
Pennsylvania State University
,
2016
).
34.
Ensor
B.
,
Motta
A. T.
,
Lucente
A.
,
Seidensticker
J. R.
,
Partezana
J.
, and
Cai
Z.
, “
Investigation of Breakaway Corrosion Observed during Oxide Growth in Pure and Low Alloying Element Content Zr Exposed in Water at 360°C
,”
Journal of Nuclear Materials
558
(
2022
): 153358,
35.
Yu
Z.
,
Kautz
E.
,
Zhang
H.
,
Schneider
A.
,
Kim
T.
,
Zhang
Y.
,
Lambeets
S.
,
Devaraj
A.
, and
Couet
A.
, “
Irradiation Damage Reduces Alloy Corrosion Rate via Oxide Space Charge Compensation Effects
,”
Acta Materialia
253
(
2023
): 118956,
36.
Turkin
A. A.
,
Buts
A. V.
, and
Bakai
A. S.
, “
Construction of Radiation-Modified Phase Diagrams under Cascade-Producing Irradiation: Application to Zr–Nb Alloy
,”
Journal of Nuclear Materials
305
(
2002
): 134–152.
37.
Doriot
S.
,
Verhaeghe
B.
,
Béchade
J.-L.
,
Menut
D.
,
Gilbon
D.
,
Mardon
J.-P.
,
Cloué
J.-M.
,
Miquet
A.
, and
Legras
L.
, “
Microstructural Evolution of M5 Alloy Irradiated in PWRs up to High Fluences—Comparison with Other Zr-Based Alloys
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 759–799,
38.
Ribis
J.
,
Doriot
S.
, and
Onimus
F.
, “
Shape, Orientation Relationships and Interface Structure of Beta-Nb Nano-Particles in Neutron Irradiated Zirconium Alloy
,”
Journal of Nuclear Materials
511
(
2018
): 18–29,
39.
Tiwari
G. P.
,
Sharma
B. D.
,
Raghunathan
V. S.
, and
Patil
R. V.
, “
Self- and Solute-Diffusion in Dilute Zirconium-Niobium Alloys in β-Phase
,”
Journal of Nuclear Materials
46
(
1973
): 35–40.
40.
Mamivand
M.
,
Yang
Y.
,
Busby
J.
, and
Morgan
D.
, “
Integrated Modeling of Second Phase Precipitation in Cold-Worked 316 Stainless Steels under Irradiation
,”
Acta Materialia
130
(
2017
): 94–110.
41.
Yu
Z.
,
Werden
J. W.
,
Capps
N. A.
,
Linton
K. D.
, and
Couet
A.
, “
(S)TEM/EDS Study of Native Precipitates and Irradiation Induced Nb-Rich Platelets in High-Burnup M5®
,”
Journal of Nuclear Materials
544
(
2020
): 152667,
42.
Yu
Z.
,
Moorehead
M.
,
Borrel
L.
,
Hu
J.
,
Bachhav
M.
, and
Couet
A.
, “
Fundamental Understanding of Nb Effect on Corrosion Mechanisms of Irradiated Zr-Nb Alloys
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 669–695,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal