Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Chromium-coated zirconium-based nuclear fuel claddings are studied within the CEA-Framatome-EDF French nuclear fuel joint program as a short-term “enhanced accident-tolerant fuel” concept. It has already been demonstrated that, in hypothetical accident conditions such as in a loss-of-coolant accident (LOCA), 10–20-µm-thick chromium coating slows down the high-temperature (HT) steam oxidation overall kinetics and improves induced postquenching cladding strength and ductility. However, upon HT steam oxidation of chromium-coated zirconium-based nuclear fuel claddings, chromium diffusion occurs within the βZr metallic substrate, thus contributing to the overall chromium coating consumption kinetics. In the present study, it is shown that, depending on the cooling scenario from the high oxidation temperature applied, the mechanical response of the chromium-enriched prior-βZr layer of chromium-coated zirconium-based alloy is quite different. Among the different results obtained and thanks to preliminary thermodynamic calculations and the study of chromium-doped Zr1Nb(O) model alloys, it is shown that after direct water quenching from a high oxidation temperature (i.e., βZr temperature range), the observed hardening and potential embrittlement at room temperature of the chromium-enriched prior-βZr metallic substrate should be related to a martensitic chromium-supersaturated prior-βZr structure formation, with a linear chromium solid-solution strengthening effect up to 1.5 wt.% chromium. Beyond 2.5 wt.% chromium, a smooth decrease of prior-βZr hardness is observed. Improved chromium-enriched prior-βZr layer ductility has been observed following a more LOCA-prototypical “two-step” cooling scenario (with a final water quenching from 700°C) and has been related to the early precipitation of most of the available chromium as coarse ZrCr2 secondary precipitate phases upon cooling from the prior-βZr temperature range.

1.
Yang
J.
,
Steinbrück
M.
,
Tang
C.
,
Große
M.
,
Liu
J.
,
Zhang
J.
,
Yun
D.
, and
Wang
S.
, “
Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding
,”
Journal of Alloys and Compounds
895
(
2022
): 162450,
2.
Kashkarov
E.
,
Afornu
B.
,
Sidelev
D.
,
Krinitcyn
M.
,
Gouws
V.
, and
Lider
A.
, “
Recent Advances in Protective Coatings for Accident Tolerant Zr-Based Fuel Claddings
,”
Coatings
11
, no.
5
(
2021
): 557,
3.
Chen
H.
,
Wang
X.
, and
Zhang
R.
, “
Application and Development Progress of Cr-Based Surface Coating in Nuclear Fuel Elements: II. Current Status and Shortcomings of Performance Studies
,”
Coatings
10
, no.
9
(
2020
): 835,
4.
Brachet
J.-C.
,
Idarraga-Trujillo
I.
,
Le Flem
M.
,
Le Saux
M.
,
Vandenberghe
V.
,
Urvoy
S.
,
Rouesne
E.
 et al
, “
Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors
,”
Journal of Nuclear Materials
517
(
2019
): 268–285.
5.
Tang
C.
,
Stueber
M.
,
Seifert
H. J.
, and
Steinbrück
M.
, “
Protective Coatings on Zirconium-Based Alloys as Accident Tolerant Fuel (ATF) Claddings
,”
Corrosion Reviews
35
(
2017
): 141–165.
6.
Brachet
J.-C.
,
Rouesne
E.
,
Guilbert
T.
,
Ribis
J.
,
Le Saux
M.
,
Nony
G.
,
Palancher
H.
,
David
A.
,
Bischoff
J.
,
Augereau
J.
, and
Pouillier
E.
, “
High Temperature Steam Oxidation of Chromium-Coated Zirconium-Based Alloys: Kinetics and Process
,”
Corrosion Science
167
(
2020
): 108537,
7.
Brachet
J.-C.
,
Le Saux
M.
,
Bischoff
J.
,
Palancher
H.
,
Chosson
R.
,
Pouillier
E.
, and
Guilbert
T.
, “
Evaluation of Equivalent Cladding Reacted Parameters of Cr-Coated Claddings Oxidized in Steam at 1200°C in Relation with Oxygen Diffusion/Partitioning and Post-Quench Ductility
,”
Journal of Nuclear Materials
533
(
2020
): 152106,
8.
Brachet
J.-C.
,
Pelchat
J.
,
Hamon
D.
,
Maury
R.
,
Jacques
P.
, and
Mardon
J.-P.
, “
Mechanical Behavior at Room Temperature and Metallurgical Study of Low-Tin Zy-4 and M5™ Alloys after Oxidation at 1100°C and Quenching
” (paper presentation, Proceedings of the Technical Committee Meeting on Fuel Behavior under Transient and LOCA Conditions,
Halden, Norway
, September 10–14,
2001
).
9.
Portier
L.
,
Bredel
T.
,
Brachet
J.-C.
,
Maillot
V.
,
Mardon
J.-P.
, and
Lesbros
A.
, “
Influence of Long Service Exposures on the Thermal-Mechanical Behavior of Zy-4 and M5™ Alloys in LOCA Conditions
,”
Journal of ASTM International
2
(
2005
): JAI12468,
10.
Brachet
J.-C.
,
Maillot
V.
,
Portier
L.
,
Gilbon
D.
,
Lesbros
A.
,
Waeckel
N.
, and
Mardon
J.-P.
, “
Hydrogen Content, Preoxidation, and Cooling Scenario Influences on Post-Quench Microstructure and Mechanical Properties of Zircaloy-4 and M5 Alloys in LOCA Conditions
,”
Journal of ASTM International
5
(
2008
): JAI101116,
11.
Le Saux
M.
,
Brachet
J.-C.
,
Vandenberghe
V.
,
Rouesne
E.
,
Urvoy
S.
,
Ambard
A.
, and
Chosson
R.
, “
Effect of a Pre-Oxide on the High Temperature Steam Oxidation of Zircaloy-4 and M5Framatome Alloys
,”
Journal of Nuclear Materials
518
(
2019
): 386–399.
12.
Forgeron
T.
,
Brachet
J.-C.
,
Barcelo
F.
,
Castaing
A.
,
Hivroz
J.
,
Mardon
J.-P.
, and
Bernaudat
C.
, “
Experiment and Modelling of Advanced Fuel Rod Cladding Behavior under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 256–278,
13.
Loucif
K.
,
Borrelly
R.
, and
Merle
P.
, “
Study by Thermoelectric Power and Resistivity Measurements of the Precipitation Kinetics in Zirconium Alloys between 450 and 600°C
,”
Journal of Nuclear Materials
189
(
1992
): 34–45.
14.
Loucif
K.
,
Merlem
P.
, and
Borrelly
R.
, “
On the Thermoelectric Power Variation According to Temperature of Zirconium Alloys and Its Possible Application to the Estimation of the Amount of Solubility Variations of Iron and Chromium in Zircaloy
,”
Journal of Nuclear Materials
202
(
1993
): 193–196.
15.
Merle
P.
,
Loucif
K.
, and
Borrelly
R.
, “
Microstructural Evolution of α or β Quenched Zirconium Alloys during Isothermal Agings, between 20°C and 750°C
,”
Journal de Physique Archives
3
(
1993
): C7-519–C7-522,
16.
Toffolon
C.
,
Barberis
P.
,
Brachet
J.-C.
,
Mardon
J.-P.
, and
Legras
L.
, “
Study of Nb and Fe Precipitation in α-Phase Temperature Range (400 to 550°C) in Zr-Nb-(Fe-Sn) Alloys
,” in
Zirconium in the Nuclear Industry: Fourteenth International Symposium
, ed.
Rudling
P.
and
Kammenzind
B.
(
West Conshohocken, PA
:
ASTM International
,
2005
), 81–101,
17.
Béchade
J.-L.
,
Brachet
J.-C.
,
Pelé
J.
, and
Guilbert
T.
, “
Relationships between Thermoelectric Power (TEP) Values and Crystallographic Texture of Zircaloy-4 Plates
,”
Journal de Physique Archives
10
(
2000
): Pr10-203–Pr10-209,
18.
Baker
L.
and
Just
L. C.
, Studies of Metal-Water Reactions at High Temperatures. III. Experimental and Theoretical Studies of the Zirconium-Water Reaction, ANL-6548 (Argonne, IL:
Argonne National Laboratory
,
1962
).
19.
Mehrer
H.
, ed.,
Diffusion in Solid Metals and Alloys
(
Berlin, Germany
:
Springer-Verlag
,
1990
).
20.
Krejci
J.
,
Sevecek
M.
,
Kabatova
J.
,
Manoch
F.
,
Koci
J.
,
Cvrcek
L.
,
Malek
J.
 et al
, “
Experimental Behavior of Chromium-Based Coatings
” (paper presentation, TopFuel 2018,
Prague, Czech Republic
, September 30–October 4,
2018
).
21.
Brachet
J.-C.
,
Guilbert
T.
,
Le Saux
M.
,
Rousselot
J.
,
Nony
G.
,
Toffolon-Masclet
C.
,
Michau
A.
 et al
, “
Behavior of Cr-coated M5 Claddings during and after High Temperature Steam Oxidation from 800°C up to 1500°C (Loss-of-Coolant Accident & Design Extension Conditions)
” (paper presentation,
TopFuel 2018
,
Prague, Czech Republic
, September 30–October 4,
2018
).
22.
Chaari
N.
,
Bischoff
J.
,
Buchanan
K.
,
Delafoy
C.
,
Barberis
P.
,
Augereau
J.
, and
Nimishakavi
K.
, “
The Behavior of Cr-Coated Zirconium Alloy Cladding Tubes at High Temperatures
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
, (
West Conshohocken, PA
:
ASTM International
,
2021
), 189–210.
23.
Steinbrück
M.
,
Stegmaier
U.
,
Große
M.
,
Czerniak
L.
,
Lahoda
E.
,
Daum
R.
, and
Yueh
K.
, “
High-Temperature Oxidation and Quenching of Chromium-Coated Zirconium Alloy ATF Cladding Tubes with and w/o Pre-Damage
,”
Journal of Nuclear Materials
559
(
2022
): 153470,
24.
Nagase
F.
and
Fuketa
T.
, “
Behavior of Pre-Hydrided Zircaloy-4 Cladding under Simulated LOCA Conditions
,”
Journal of Nuclear Science and Technology
42
(
2005
): 209–218.
25.
Billone
M. C.
,
Yan
Y.
,
Burtseva
T.
, and
Daum
R.
, Cladding Embrittlement during Postulated Loss-of-Coolant Accidents, NUREG/CR-6967 (Rockville, MD:
U.S. Nuclear Regulatory Commission
,
2008
).
26.
Yueh
H. K.
,
Comstock
R. J.
,
Dunn
B.
,
Le Saux
M.
,
Lin
Y. P.
,
Lutz
D.
,
Park
D. J.
,
Perez-Fero
E.
, and
Yan
Y.
, “
Loss of Coolant Accident Testing Round Robin
” (paper presentation, TopFuel 2013,
Charlotte, NC
, September 15–19,
2013
).
27.
Brachet
J.-C.
,
Hamon
D.
,
Béchade
J.-L.
,
Forget
P.
,
Toffolon-Masclet
C.
,
Raepsaet
C.
,
Mardon
J.-P.
, and
Sebbari
B.
, “
Quantification of the Chemical Elements Partitioning within Pre-Hydrided Zircaloy-4 after High Temperature Steam Oxidation as a Function of the Final Cooling Scenario (LOCA Conditions) and Consequences on the (Local) Materials Hardening
,” in Fuel Behaviour and Modelling under Severe Transient and Loss of Coolant Accident (LOCA) Conditions, IAEA-TECDOC-CD-1709 (Vienna:
International Atomic Energy Agency
,
2013
), 253–265.
28.
Yang
J.
,
Stegmaier
U.
,
Tang
C.
,
Steinbrück.
M.
,
Große
M.
,
Wang
S.
, and
Seifert
H. J.
, “
High Temperature Cr-Zr Interaction of Two Types of Cr-Coated Zr Alloys in Inert Gas Environment
,”
Journal of Nuclear Materials
547
(
2021
): 152806,
29.
Rhee
S. K.
and
Hoch
M.
, “
The System Chromium-Zirconium-Oxygen at 1200, 1500, and 1700°C
,”
Transactions of the Metallurgical Society of AIME
230
(
1964
): 1687–1690.
30.
González
R. O.
and
Gribaudo
L. M.
, “
Analysis of Controversial Zones of the Zr–Cr Equilibrium Diagram
,”
Journal of Nuclear Materials
342
, nos.
1–3
(
2005
): 14–19.
31.
Lafaye
P.
,
Toffolon-Masclet
C.
,
Crivello
J.-C.
, and
Joubert
J.-M.
, “
Thermodynamic Modelling of the Cr-Nb-Sn System
,”
Calphad
57
(
2017
): 37–45.
32.
Lafaye
P.
,
Toffolon-Masclet
C.
,
Crivello
J.-C.
, and
Joubert
J.-M.
, “
Experimental Study, First-Principles Calculation and Thermodynamic Modelling of the Cr–Fe–Nb–Sn–Zr Quinary System for Application as Cladding Materials in Nuclear Reactors
,”
Journal of Nuclear Materials
544
(
2021
): 152692,
33.
Kjellqvist
L.
,
Selleby
M.
, and
Sundman
B.
, “
Thermodynamic Modelling of the Cr–Fe–Ni–O System
,”
Calphad
32
, no.
3
(
2008
): 577–592.
34.
Wang
C.
,
Zinkevich
M.
, and
Aldinger
F.
, “
On the Thermodynamic Modeling of the Zr–O System
,”
Calphad
no.
3
(
2004
): 281–292.
35.
Pérez
R. J.
and
Massih
A. R.
, “
Thermodynamic Evaluation of the Nb–O–Zr System
,”
Journal of Nuclear Materials
360
(
2007
): 242–254.
36.
Flewitt
P.
, “
Reassessment of Monotectoid Loop (β-Nb+β-Zr) in Niobium-Zirconium System
,”
Journal of Applied Crystallography
5
(
1972
): 423–425.
37.
Van Effenterre
P.
,
Rapport CEA-R-4390
(in French) (
Paris, France
:
Centre d’Etudes Nucléaires de Saclay
,
1972
).
38.
Kim
W. Y.
and
Takasugi
T.
, “
Laves Phase Fields in Cr-Zr-Nb and Cr-Zr-Hf Alloy Systems
,”
Scripta Materialia
48
(
2003
): 559–563.
39.
Lu
H.-J.
,
Wang
W.-B.
,
Zou
N.
,
Shen
J.-Y.
,
Lu
X.-G.
, and
He
Y.-L.
, “
Thermodynamic Modeling of Cr–Nb and Zr–Cr with Extension to the Ternary Zr–Nb–Cr System
,”
Calphad
50
(
2015
): 134–143.
40.
Borrossi
R.
, “
Phase Transformation and Mechanical Properties at High Temperature of M5Framatome Alloy: Effect of the Temperature History
” (in French) (PhD thesis,
MINES ParisTech
,
2021
).
41.
Slattery
G. F.
, “
The Effect of the Cooling Rate on the β-α Transformation in the Zirconium/2 at.% Chromium/o.16 at.% Iron Alloy
,”
Journal of the Less-Common Metals
16
, no.
2
(
1968
): 91–101.
42.
Hatt
B. A.
,
Roberts
J. A.
, and
Williams
G. I.
, “
Occurrence of the Meta-Stable Omega Phase in Zirconium Alloys
,”
Nature
180
(
1957
): 1406.
43.
Rumball
W. M.
and
Helder
F. G.
, “
Phase Equilibria in Zirconium-Rich Zirconium-Chromium-Oxygen Alloys
,”
Journal of the Less-Common Metals
19
(
1969
): 345–358.
44.
Dobromyslov
A. V.
and
Kazantseva
N. V.
, “
Formation of Omega-Phase in Zr-4at.%Cr Alloy
,”
Scripta Materialia
35
, no.
7
(
1996
): 811–815.
45.
Rumball
W. M.
, “
The Effect of Chromium, Oxygen and Microstructure on the Hardness of Zirconium-Chromium Alloys
,”
Journal of the Less-Common Metals
39
(
1975
): 35–42.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal