Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Delayed hydride cracking (DHC) has been a long studied failure mechanism of zirconium alloys used as pressure tubes and nuclear fuel cladding materials. However, challenges with DHC research have persisted with regard to testing realistic cracking directions (i.e., radial cracking caused by internal pressures). In this study, new testing procedures using a three-point bend setup alleviate geometric challenges by inducing a radial outside-in crack oriented in the axial direction of irradiated and unirradiated Zircaloy-2 claddings. One part of the irradiated samples stemmed from an inner liner cladding of a fuel rod that had been in use in the Swiss boiling water reactor at Leibstadt, and the other part came from Target-11 of the Swiss spallation neutron source. Radial DHC cracks were analyzed through high-resolution neutron imaging, metallography, fractography, and finite element modeling (FEM). When observed through the precipitation patterns in neutron imaging and metallography, irradiation damage appears to impact hydrogen diffusion, where diffusion seems reduced in irradiated material compared with unirradiated material. Hydrogen quantification around arrested crack tips shows the trend of hydride diffusion during DHC with respect to temperature and unveils the influence of the liner on source hydrogen for DHC. The combination of crack velocity measurements and hydrogen quantification through neutron imaging indicate that excess amounts of hydrogen do not drastically increase the crack velocity. FEM back-calculated the threshold stress intensity factor, KIH, showing a dependence on hydrogen concentration for optimum DHC conditions with a minimum value around 6 MPa√m.

1.
Influence of Scattering Correction on Quantitative Hydrogen Analysis of Fuel Claddings Using High Resolution Neutron Radiography
Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, IAEA-TECDOC-996 (Vienna, Austria:
International Atomic Energy Agency
,
1998
).
2.
Gong
W.
,
Trtik
P.
,
Duarte
L.
,
Colldeweih
A. W.
,
Grosse
M.
,
Lehmann
E.
, and
Bertsch
J.
, “
Hydrogen Diffusion and Precipitation in Duplex Zirconium Nuclear Fuel Cladding Quantified by High-Resolution Neutron Imaging
,”
Journal of Nuclear Materials
526
(
2019
): 151757.
3.
Kim
Y. S.
, “
Hydride Reorientation and Delayed Hydride Cracking of Spent Fuel Rods in Dry Storage
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
40
(
2008
): 2867–2875.
4.
Suman
S.
,
Khan
M. K.
,
Pathak
M.
,
Singh
R. N.
, and
Chakravartty
J. K.
, “
Hydrogen in Zircaloy: Mechanism and Its Impacts
,”
International Journal of Hydrogen Energy
40
(
2015
): 5976–5994.
5.
Puls
M. P.
,
The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking
(
New York, NY
:
Springer
,
2012
).
6.
Coleman
C. E.
and
Hardie
D.
, “
The Hydrogen Embrittlement of Zirconium in Slow-Bend Tests
,”
Journal of Nuclear Materials
19
(
1966
): 1–8.
7.
Hardie
D.
, “
The Influence of the Matrix on the Hydrogen Embrittlement of Zirconium in Bend Tests
,”
Journal of Nuclear Materials
42
(
1972
): 317–324.
8.
Dahlbäck
M.
,
Hallstadius
L.
,
Limbäck
M.
,
Vesterlund
G.
,
Andersson
T.
,
Witt
P.
,
Izquierdo
J.
 et al
, “
The Effect of Liner Component Iron Content on Cladding Corrosion, Hydriding, and PCI Resistance
,” in
Zirconium in the Nuclear Industry: Fourteenth International Symposium
, ed.
Rudling
P.
and
Kammenzind
B.
(
West Conshohocken, PA
:
ASTM Internnational
,
2004
), 873–895,
9.
Duarte
L. I.
,
Fagnoni
F.
,
Zubler
R.
,
Weijia
W.
,
Trtik
P.
, and
Bertsch
J.
, “
Effect of the Inner Liner on the Hydrogen Distribution of Zircaloy-2 Nuclear Fuel Claddings
,”
Journal of Nuclear Materials
557
(
2021
): 153284.
10.
Simpson
C. J.
and
Ells
C. E.
, “
Delayed Hydrogen Embrittlement in Zr-2.5 wt % Nb
,”
Journal Of Nuclear Materials
52
(
1974
): 289–295.
11.
McRae
G. A.
,
Coleman
C. E.
, and
Leitch
B. W.
, “
The First Step for Delayed Hydride Cracking in Zirconium Alloys
,”
Journal of Nuclear Materials
396
(
2010
): 130–143.
12.
Kim
Y. S.
, “
Driving Force for Delayed Hydride Cracking of Zirconium Alloys
,”
Metals and Materials International
11
(
2005
): 29–38.
13.
Dutton
R.
,
Nuttall
K.
,
Puls
M. P.
, and
Simpson
L. A.
, “
Mechanisms of Hydrogen Induced Delayed Cracking in Hydride Forming Materials
,”
Metallurgical Transactions A
8
(
1977
): 1553–1562.
14.
Northwood
D. O.
and
Kosasih
U.
, “
Hydrides and Delayed Hydrogen Cracking in Zirconium and Its Alloys
,”
International Metals Reviews
28
(
1983
): 92–121.
15.
Kim
Y. S.
and
Park
S. S.
, “
Stage I and II Behaviors of Delayed Hydride Cracking Velocity in Zirconium Alloys
,”
Journal of Alloys Compounds
453
(
2008
): 210–214.
16.
Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors, IAEA-TECDOC-1410 (Vienna, Austria:
International Atomic Energy Agency
,
2004
).
17.
Raynaud
P. A.
,
Koss
D. A.
, and
Motta
A. T.
, “
Crack Growth in the Through-Thickness Direction of Hydrided Thin-Wall Zircaloy Sheet
,”
Journal of Nuclear Materials
420
(
2012
): 69–82.
18.
Simpson
L. A.
and
Puls
M. P.
, “
The Effects of Stress, Temperature and Hydrogen Content on Hydride-Induced Crack Growth in Zr-2.5 Pct Nb
,”
Metallurgical Transactions A
10
(
1979
): 1093–1105.
19.
Kim
Y. S.
,
Kim
S. J.
, and
Im
K. S.
, “
Delayed Hydride Cracking in Zr-2.5Nb Tube with the Cooling Rate and the Notch Tip Shape
,”
Journal of Nuclear Materials
.
335
(
2004
): 387–396.
20.
Xia
Z.
,
Zhang
J.
,
Tong
Q.
, and
Ding
S.
, “
Multi-Physics Modeling of Delayed Hydride Cracking in Zirconium Alloys
,”
Journal of the Mechanics and Physics of Solids
132
(
2019
): 103677,
21.
Hong
J. D.
,
Park
M.
,
Holston
A. M.
A.
,
Stjärnsäter
J.
, and
Kook
D.
, “
Threshold Stress Intensity Factor of Delayed Hydride Cracking in Irradiated and Unirradiated Zircaloy-4 Cladding
,”
Journal of Nuclear Materials
543
(
2021
): 152596.
22.
Alvarez Holston
A. M.
and
Stjärnsäter
J.
, “
On the Effect of Temperature on the Threshold Stress Intensity Factor of Delayed Hydride Cracking in Light Water Reactor Fuel Cladding
,”
Nuclear Engineering and Technology
49
(
2017
): 663–667.
23.
Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage, IAEA-TECDOC-1781 (Vienna, Austria:
International Atomic Energy Agency
,
2015
).
24.
Desquines
J.
,
Koss
D. A.
,
Motta
A. T.
,
Cazalis
B.
, and
Petit
M.
, “
The Issue of Stress State during Mechanical Tests to Assess Cladding Performance during a Reactivity-Initiated Accident (RIA)
,”
Journal of Nuclear Materials
412
(
2011
): 250–267.
25.
Kozsda-Barsy
E.
,
Katalin
K.
,
Zoltan
H.
,
Marta
H.
,
Kis
Z.
,
Maroti
B.
,
Nagy
I.
 et al
, “
Post-Test Examinations on Zr-1%Nb Claddings after Ballooning and Burst, High-Temperature Oxidation and Secondary Hydriding
,”
Journal of Nuclear Materials
508
(
2018
): 423–433.
26.
Sakamoto
K.
,
Nakatsuka
M.
, and
Higuchi
T.
, “
Simulation of Outside-In Cracking in Boiling Water Reactor Fuel Cladding Tubes under Power Ramp
,”
Journal of ASTM International
7
(
2011
): JAI102938,
27.
Aulet
D.
,
Dai
Y.
,
Bergmann
R. M.
, and
Wohlmuther
M.
, “
Radiation Damage Assessment of the Sixth SINQ Target Irradiation Program Based on MCNPX Simulation
,”
Nuclear Instruments and Methods in Physics Research—Section A
922
(
2019
): 310–321.
28.
Dai
Y.
,
Boutellier
V.
,
Grabherr
R.
,
Urech
A.
,
Blau
B.
,
Welte
J.
,
Bertsch
J.
,
Martin
M.
,
Pouchon
M. A.
, and
Wohlmuther
M.
, “
Post-Irradiation Examinations of SINQ Target-11
,”
Materials Science Forum
1024
(
2021
): 41–52.
29.
Domizzi
G.
,
Lanzani
L.
,
Coronel
P.
, and
Bruzzoni
P.
, “
Supercharging of Zircaloy-4
,”
Journal of Nuclear Materials
246
(
1997
): 247–251.
30.
Colldeweih
A. W.
,
Fagnoni
F.
,
Trtik
P.
,
Zubler
R.
,
Pouchon
M. A.
, and
Bertsch
J.
, “
Delayed Hydride Cracking in Zircaloy-2 with and without Liner at Various Temperatures Investigated by High-Resolution Neutron Radiography
,”
Journal of Nuclear Materials
561
(
2022
): 153549.
31.
Standard Test Method for Measurement of Fracture Toughness
, ASTM E1820-13 (
West Conshohocken, PA
:
ASTM International
, approved November 15,
2013
),
32.
Une
K.
and
Ishimoto
S.
, “
Dissolution and Precipitation Behavior of Hydrides in Zircaloy-2 and High Fe Zircaloy
,”
Journal of Nuclear Materials
322
(
2003
): 66–72.
33.
Katsumi
U.
and
Ishimoto
S.
, “
Terminal Solid Solubility of Hydrogen in Unalloyed Zirconium by Differential Scanning Calorimetry
,”
Journal of Nuclear Science and Technology
41
(
2004
): 949–952.
34.
Une
K.
,
Ishimoto
S.
,
Etoh
Y.
,
Ito
K.
,
Ogata
K.
,
Baba
T.
,
Kamimura
K.
, and
Kobayashi
Y.
, “
The Terminal Solid Solubility of Hydrogen in Irradiated Zircaloy-2 and Microscopic Modeling of Hydride Behavior
,”
Journal of Nuclear Materials
389
(
2009
): 127–136.
35.
Stuhr
U.
,
Grosse
M.
, and
Wagner
W.
, “
The TOF-Strain Scanner POLDI with Multiple Frame Overlap—Concept and Performance
,”
Material Science and Engineering A
437
(
2006
): 134–138.
36.
Trtik
P.
and
Lehmann
E. H.
, “
Progress in High-Resolution Neutron Imaging at the Paul Scherrer Institut—The Neutron Microscope Project
,”
Journal of Physics: Conference Series
746
(
2016
): 012004,
37.
Boillat
P.
,
Carminati
C.
,
Schmid
F.
,
Grünzweig
C.
,
Hovind
J.
,
Kaestner
A.
,
Mannes
D.
 et al
, “
Chasing Quantitative Biases in Neutron Imaging with Scintillator-Camera Detectors: A Practical Method with Black Body Grids
,”
Optics Express
26
(
2018
): 15769.
38.
Carminati
C.
,
Boillat
P.
,
Schmid
F.
,
Vontobel
P.
,
Hovind
J.
,
Morgano
M.
,
Raventos
M.
 et al
, “
Implementation and Assessment of the Black Body Bias Correction in Quantitative Neutron Imaging
,”
PLOS One
14
, no.
1
(
2019
): e0210300,
39.
Yetik
O.
,
Duarte
L.
, and
Bertsch
J.
, “
Influence of Scattering Correction on Quantitative Hydrogen Analysis of Fuel Claddings Using High Resolution Neutron Radiography
” (paper presentation, TopFuel 2021,
Santander, Spain
, October 24–28,
2021
).
40.
Trtik
P.
,
Zubler
R.
,
Gong
W.
,
Grabherr
R.
,
Bertsch
J.
, and
Duarte
L.
, “
Sample Container for High-Resolution Neutron Imaging of Spent Nuclear Fuel Cladding Sections
,”
Review of Scientific Instruments
91
 1–4 (
2020
).
41.
Grosse
M.
,
Stuckert
J.
,
Steinbrück
M.
, and
Kaestner
A.
, “
Secondary Hydriding during LOCA—Results from the QUENCH-L0 Test
,”
Journal of Nuclear Materials
420
(
2012
): 575–582.
42.
Buitrago
N. L.
,
Santisteban
J. R.
,
Tartaglione
A.
,
Marín
J.
,
Barrow
L.
,
Daymond
M. R.
,
Schulz
M.
 et al
, “
Determination of Very Low Concentrations of Hydrogen in Zirconium Alloys by Neutron Imaging
,”
Journal of Nuclear Materials
503
(
2018
): 98–109.
43.
Strobl
M.
,
Kardjilov
N.
,
Hilger
A.
,
Kühne
G.
,
Frei
G.
, and
Manke
I.
, “
High-Resolution Investigations of Edge Effects in Neutron Imaging
,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
604
, no.
3
(
2009
): 640–645.
44.
Colldeweih
A. W.
,
Baris
A.
,
Spätig
P.
, and
Abolhassani
S.
, “
Evaluation of Mechanical Properties of Irradiated Zirconium Alloys in the Vicinity of the Metal-Oxide Interface
,”
Material Science and Engineering A
742
(
2019
): 842–850.
45.
Proff
C.
,
Abolhassani
S.
,
Dadras
M. M.
, and
Lemaignan
C.
, “
In Situ Oxidation of Zirconium Binary Alloys by Environmental SEM and Analysis by AFM, FIB, and TEM
,”
Journal of Nuclear Materials
404
(
2010
): 97–108.
46.
Kammenzind
B. F.
, “
Hydrogen Trapping at Neutron Irradiation Produced Defects in Recrystallized Alpha Annealed Zircaloy-4
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 1167–1191,
47.
Vizcaíno
P.
,
Santisteban
J. R.
,
Domizzi
G.
, and
Almer
J.
, “
Hydrogen Solubility and Microstructural Changes in Zircaloy-4 Due to Neutron Irradiation
,”
Journal of ASTM International
8
, no.
1
(
2011
): JAI102949,
48.
Kubo
T.
,
Kobayashi
Y.
, and
Uchikoshi
H.
, “
Measurements of Delayed Hydride Cracking Propagation Rate in the Radial Direction of Zircaloy-2 Cladding Tubes
,”
Journal of Nuclear Materials
427
(
2012
): 18–29.
49.
Colldeweih
A.
and
Bertsch
J.
, “
Effect of Temperature and Hydrogen Concentration on the Threshold Stress Intensity Factor of Radial Delayed Hydride Cracking in Fuel Cladding
,”
Journal of Nuclear Materials
565
(
2022
): 153737.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal