Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

During normal reactor operation, high-temperature water corrosion of the zirconium-based fuel cladding generates hydrogen, some of which diffuses into the metal. Hydrogen, both in solid solution and in its precipitate form (hydrides), affects the mechanical properties of the zirconium cladding. Depending on the amount of hydrogen, as well as the temperature and deformation rate, different embrittlement mechanisms can be active in the material. As long-term dry storage of spent nuclear fuel becomes increasingly prevalent, the study of hydrogen's effects on cladding materials becomes crucially important. Whereas most current research on spent fuel cladding focuses on embrittlement caused by hydrides prevailing at lower temperatures and higher hydrogen concentrations, this project concentrates on the potential effects of hydrogen in solid solution on the mechanical properties of zirconium alloys at temperatures found during interim dry storage, handling, and transportation. This work evaluates the mechanical properties of Zircaloy-4 samples by means of elevated-temperature three-point bending flexural tests, elevated-temperature microindentation, and elevated-temperature nanoindentation. Experiments analyze the hardness, bending modulus, bending yield point, and strain-rate sensitivity of the material at temperatures between 25 and 400°C in the presence of up to 700 wppm hydrogen addition in the tested material. In addition to the well-known hydride-induced hardening effect, results indicate the presence of a small but significant hydrogen-induced softening effect in conditions in which the majority of hydrogen is expected to be in solid solution. This effect is compatible with the hydrogen-enhanced localized plasticity model, according to which solid-solution hydrogen tends to reduce the energy barrier required to generate dislocations and lower the Peierls stress needed to move them, leading to increased ductility in the metal.

1.
Vicente Alvarez
M. A.
,
Santisteban
J. R.
,
Vizcaino
P.
,
Flores
A. V.
,
Banchik
A. D.
, and
Almer
J.
, “
Hydride Reorientation in Zr2.5Nb Studied by Synchrotron X-Ray Diffraction
,”
Acta Materialia
60
, no.
20
(
2012
): 6892–6906,
2.
Kiran Kumar
N. A.
P.
and
Szpunar
J. A.
, “
EBSD Studies on Microstructure and Crystallographic Orientation of δ-Hydrides in Zircaloy-4, Zr–1% Nb and Zr–2.5% Nb
,”
Materials Science and Engineering: A
528
, no.
21
(
2011
): 6366–6374,
3.
Qin
W.
,
Kiran Kumar
N. A.
P.
,
Szpunar
J. A.
, and
Kozinski
J.
, “
Intergranular δ-Hydride Nucleation and Orientation in Zirconium Alloys
,”
Acta Materialia
59
, no.
18
(
2011
): 7010–7021,
4.
Kim
J.
,
Yoon
H.
,
Kook
D.
, and
Kim
Y.
, “
A Study on the Initial Characteristics of Domestic Spent Nuclear Fuels for Long Term Dry Storage
,”
Nuclear Engineering and Technology
45
, no.
3
(
2013
): 377–384,
5.
Motta
A. T.
,
Capolungo
L.
,
Chen
L.-Q.
,
Cinbiz
M. N.
,
Daymond
M. R.
,
Koss
D. A.
,
Lacroix
E.
 et al
, “
Hydrogen in Zirconium Alloys: A Review
,”
Journal of Nuclear Materials
518
(
2019
): 440–460,
6.
Gong
W.
,
Trtik
P.
,
Colldeweih
A. W.
,
Duarte
L. I.
,
Grosse
M.
,
Lehmann
E.
, and
Bertsch
J.
, “
Hydrogen Diffusion and Precipitation in Duplex Zirconium Nuclear Fuel Cladding Quantified by High-Resolution Neutron Imaging
,”
Journal of Nuclear Materials
526
(
2019
): 151757,
7.
Duarte
L. I.
,
Fagnoni
F.
,
Zubler
R.
,
Gong
W.
,
Trtik
P.
, and
Bertsch
J.
, “
Effect of the Inner Liner on the Hydrogen Distribution of Zircaloy-2 Nuclear Fuel Claddings
,”
Journal of Nuclear Materials
584
(
2023
): 154574,
8.
Fagnoni
F.
,
Trtik
P.
,
Wheeler
J. M.
,
Zubler
R.
,
Bertsch
J.
, and
Duarte
L. I.
, “
Hydrogen Diffusion in Zirconium Cladding Alloys with an Inner Liner as Quantified by Neutron Radiography and Nanoindentation
,”
Journal of Nuclear Materials
557
(
2021
): 153284,
9.
Colldeweih
A. W.
,
Fagnoni
F.
,
Trtik
P.
,
Zubler
R.
,
Pouchon
M. A.
, and
Bertsch
J.
, “
Delayed Hydride Cracking in Zircaloy-2 with and without Liner at Various Temperatures Investigated by High-Resolution Neutron Radiography
,”
Journal of Nuclear Materials
561
(
2022
): 153549,
10.
Birnbaum
H. K.
and
Sofronis
P.
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture
,”
Materials Science and Engineering: A
176
, no.
1
(
1994
): 191–202,
11.
Kim
J.
and
Tasan
C. C.
, “
Microstructural and Micro-Mechanical Characterization during Hydrogen Charging: An In Situ Scanning Electron Microscopy Study
,”
International Journal of Hydrogen Energy
44
, no.
12
(
2019
): 6333–6343,
12.
Gong
P.
,
Katzarov
I. H.
,
Nutter
J.
,
Paxton
A. T.
, and
Rainforth
W. M.
, “
The Influence of Hydrogen on Plasticity in Pure Iron—Theory and Experiment
,”
Scientific Reports
10
, no.
1
(
2020
): 10209,
13.
Gill
B. J.
, “
Aspects of the Microstructure and Mechanical Properties of Zirconium Hydrogen Alloys
” (PhD thesis,
University of Surrey
,
1972
).
14.
Rico
A.
,
Martin-Rengel
M. A.
,
Ruiz-Hervias
J.
,
Rodriguez
J.
, and
Gomez-Sanchez
F. J.
, “
Nanoindentation Measurements of the Mechanical Properties of Zirconium Matrix and Hydrides in Unirradiated Pre-Hydrided Nuclear Fuel Cladding
,”
Journal of Nuclear Materials
452
, no.
1
(
2014
): 69–76,
15.
Yamanaka
S.
,
Setoyama
D.
,
Muta
H.
,
Uno
M.
,
Kuroda
M.
,
Takeda
K.
, and
Matsuda
T.
, “
Characteristics of Zirconium Hydrogen Solid Solution
,”
Journal of Alloys and Compounds
372
, no.
1
(
2004
): 129–135,
16.
Ashida
Y.
,
Yamamoto
M.
,
Naito
S.
,
Mabuchi
M.
, and
Hashino
T.
, “
Measurements of Young's Modulus and the Modulus of Rigidity of the Solid Solution of Hydrogen in Zirconium between 300 and 1300 K
,”
Journal of Applied Physics
80
, no.
6
(
1996
): 3254–3258,
17.
Kuroda
M.
,
Yoshioka
K.
,
Yamanaka
S.
,
Anda
H.
,
Nagase
F.
, and
Uetsuka
H.
, “
Influence of Precipitated Hydride on the Fracture Behavior of Zircaloy Fuel Cladding Tube
,”
Journal of Nuclear Science and Technology
37
, no.
8
(
2000
): 670–675,
18.
Yamanaka
S.
,
Yamada
K.
,
Kurosaki
K.
,
Uno
M.
,
Takeda
K.
,
Anada
H.
,
Matsuda
T.
, and
Kobayashi
S.
, “
Characteristics of Zirconium Hydride and Deuteride
,”
Journal of Alloys and Compounds
330–332
(
2002
): 99–104,
19.
Standard Specification for Zirconium and Zirconium Alloy Ingots for Nuclear Application
, ASTM B350/B350M-11 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2011
),
20.
Wheeler
J. M.
,
Maier
V.
,
Durst
K.
,
Göken
M.
, and
Michler
J.
, “
Activation Parameters for Deformation of Ultrafine-Grained Aluminium as Determined by Indentation Strain Rate Jumps at Elevated Temperature
,”
Materials Science and Engineering: A
585
(
2013
): 108–113,
21.
Wheeler
J. M.
,
Armstrong
D. E.
J.
,
Heinz
W.
, and
Schwaiger
R.
, “
High Temperature Nanoindentation: The State of the Art and Future Challenges
,”
Current Opinion in Solid State and Materials Science
19
, no.
6
(
2015
): 354–366,
22.
Wheeler
J. M.
,
Brodard
P.
, and
Michler
J.
, “
Elevated Temperature, In Situ Indentation with Calibrated Contact Temperatures
,”
Philosophical Magazine
92
, nos.
25–27
(
2012
): 3128–3141,
23.
Dieter
G. E.
,
Mechanical Metallurgy
, 3rd ed. (
London
:
McGraw-Hill
,
1988
).
24.
Wang
Q.
,
Cochrane
C.
,
Skippon
T.
,
Wang
Z.
,
Abdolvand
H.
, and
Daymond
M. R.
, “
Orientation-Dependent Irradiation Hardening in Pure Zr Studied by Nanoindentation, Electron Microscopies, and Crystal Plasticity Finite Element Modeling
,”
International Journal of Plasticity
124
(
2020
): 133–154,
25.
Gopalan
A.
,
Bind
A. K.
,
Sunil
S.
,
Murty
T. N.
,
Sharma
R. K.
,
Samanta
A.
,
Soren
A.
, and
Singh
R. N.
, “
Effect of Radial Hydride on Room Temperature Fracture Toughness of Zr-2.5Nb Pressure Tube Material
,”
Journal of Nuclear Materials
544
(
2021
): 152681,
26.
Auzoux
Q.
,
Bouffioux
P.
,
Machiels
A.
,
Yagnik
S.
,
Bourdiliau
B.
,
Mallet
C.
,
Mozzani
N.
, and
Colas
K.
, “
Hydride Reorientation and Its Impact on Ambient Temperature Mechanical Properties of High Burn-Up Irradiated and Unirradiated Recrystallized Zircaloy-2 Nuclear Fuel Cladding with an Inner Liner
,”
Journal of Nuclear Materials
494
(
2017
): 114–126,
27.
Colas
K.
,
Motta
A.
,
Daymond
M. R.
, and
Almer
J.
, “
Mechanisms of Hydride Reorientation in Zircaloy-4 Studied In Situ
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barbéris
P.
(
West Conshohocken, PA
:
ASTM International
), 1–31,
28.
Toghraee
A.
,
Bair
J.
, and
Asle Zaeem
M.
, “
Effects of Applied Load on Formation and Reorientation of Zirconium Hydrides: A Multiphase Field Modeling Study
,”
Computational Materials Science
192
(
2021
): 110367,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal