Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

During operation in nuclear reactors, zirconium core components undergo a slow process of hydrogen pickup, followed by the onset of the precipitation of zirconium hydrides. These brittle precipitates lead to degradation in the mechanical properties of the core components of the nuclear reactor, which is of importance to the industry because this can affect the life span of components in the reactor or during subsequent storage. There are still significant uncertainties as to the mechanical properties of the zirconium hydrides due to their complex characteristics: a wide range of possible precipitate sizes and geometries, variations of the hydride-matrix orientation relationship, and changes in mechanical properties with temperature, including an observed ductile-to-brittle transition of zirconium, including some hydride. In this study, using a novel approach, we address how the properties of δ-Zr hydrides themselves vary with both changes of temperature and irradiation damage. Mechanical properties were obtained using nanoindentation testing for both zirconium hydride and—as a comparison—for a Zr2.5Nb pressure tube. Proton irradiation was used to emulate the effects of neutron irradiation. After proton irradiation, the influence of temperature on hardness was observed by carrying out indentation tests from room temperature up to 300°C, collecting data at 50°C intervals. The influence of proton irradiation was analyzed using five different damage levels, including nonirradiated, from 0.05 to 0.8 dpa. An increase in temperature correlated with a decrease of the δ-Zr hydride hardness, with a more pronounced decrease with temperature for hydrides than for Zr2.5Nb.

1.
Holt
R. A.
, “
In-Reactor Deformation of Cold-Worked Zr-2.5Nb Pressure Tubes
,”
Journal of Nuclear Materials
372
(
2008
): 182–214,
2.
Withmarsh
C. L.
, Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to N.S. Savannah Reactor Design, ORNL-3281 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
1962
).
3.
Shewfelt
R. S.
W.
, “
The Anisotropic Deformation of Zr-2.5 wt% Nb CANDU Pressure Tubes between 20 and 700°C
,”
Canadian Metallurgical Quarterly
23
(
1984
): 441–445,
4.
Srivastava
D.
,
Dey
G. K.
, and
Banerjee
S.
, “
Evolution of Microstructure during Fabrication of Zr-2.5 wt pct Nb Alloy Pressure Tubes
,”
Metallurgical and Materials Transactions A
26
(
1995
): 2707–2718,
5.
Kearns
J. J.
, “
Terminal Solubility and Partitioning of Hydrogen in the Alpha Phase of Zirconium, Zircaloy-2 and Zircaloy-4
,”
Journal of Nuclear Materials
22
(
1967
): 292–303,
6.
McMinn
A.
,
Darby
E. C.
, and
Schofield
J. S.
, “
The Terminal Solid Solubility of Hydrogen in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: Twelfth International Symposium
, ed.
Sabol
G. P.
and
Moan
G. D.
(
West Conshohocken, PA
:
ASTM International
,
2000
), 173–195,
7.
Fong
R. W.
L.
and
Spooner
S.
, “
Investigation of Zirconium Hydrides Solubility Limit in Zr-2.5Nb by SANS
,”
Scripta Metallurgica et Materialia
30
(
1994
): 649–654.
8.
Cui
J.
and
Shek
G. K.
, “
Effects of Hydride Morphology and Test Temperature on Fracture Toughness of Zr-2.5Nb Pressure Tube Material
” (paper presentation, ASME 2009 Pressure Vessels and Piping Conference,
Prague, Czech Republic
, July 26–30,
2009
).
9.
Cui
J.
,
Shek
G. K.
,
Scarth
D. A.
, and
Wang
Z.
, “
Delayed Hydride Cracking Initiation at Notches in Zr-2.5Nb Alloys
,”
Journal of Pressure Vessel Technology
131
(
2009
): 041407,
10.
Cui
J.
,
Shek
G. K.
, and
Wang
Z.
, “
Overload Fracture of Hydrided Region at Simulated Blunt Flaws in Zr-2.5Nb Pressure Tube Material
,”
Journal of Pressure Vessel Technology
131
(
2009
): 041406,
11.
Motta
A. T.
,
Capolungo
L.
,
Chen
L.-Q.
,
Nedim Cinbiz
M.
,
Daymond
M. R.
,
Koss
D. A.
,
Lacroix
E.
 et al
, “
Hydrogen in Zirconium Alloys: A Review
,”
Journal of Nuclear Materials
518
(
2019
): 440–460,
12.
Carpenter
G. J.
C.
, “
The Precipitation of γ-Zirconium Hydride in Zirconium
,”
Acta Metallurgica
26
(
1978
): 1225–1235,
13.
Zuzek
E.
,
Abdata
J. R.
,
San-Martin
A.
, and
Manchester
F.
, “
The Zr-H System
,”
Bulletin of Alloy Phase Diagrams
11
(
1990
): 385–395.
14.
Steuwer
A.
,
Edwards
L.
,
Pratihar
S.
,
Ganguly
S.
,
Peel
M.
,
Fitzpatrick
M. E.
,
Marrow
T. J.
 et al
, “
In Situ Analysis of Cracks in Structural Materials Using Synchrotron X-Ray Tomography and Diffraction
,”
Nuclear Instruments and Methods in Physics Research B
246
(
2006
): 217–225,
15.
Puls
M. P.
,
The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components
, 1st ed., Vol.
1
(
London, UK
:
Springer-Verlag
,
2012
).
16.
Sahoo
S. K.
,
Hiwarkar
V. D.
,
Jain
L.
,
Samajdar
I.
,
Pant
P.
,
Dey
G. K.
,
Srivastav
D.
,
Tewari
R.
, and
Banerjee
S.
, “
Deformed Microstructures of Two-Phase Zr-2.5Nb Alloy: Effects of the Second Phase Hardnesss
,”
Journal of Nuclear Materials
404
(
2010
): 222–230,
17.
Bailey
J. E.
, “
Electron Microscope Observations on the Precipitation of Zirconium Hydride in Zirconium
,”
Acta Metallurgica
11
(
1963
): 267–280,
18.
Lundin
C. E.
and
Cox
R. H.
, “
The Age-Hardening Characteristics of Niobium-Base Zirconium Alloys
,”
Journal of the Less Common Metals
13
(
1967
): 501–510,
19.
Ells
E.
, “
Hydride Precipitates in Zirconium Alloys
,”
Journal of Nuclear Materials
28
(
1968
): 129–151.
20.
Barraclough
K. G.
and
Beevers
C. J.
, “
On the Preparation of Bulk Homogeneous Specimens of Zirconium Hydrides
,”
Journal of Nuclear Materials
33
(
1969
): 296–301,
21.
Barraclough
K. G.
and
Beevers
C. J.
, “
Some Observations on the Phase Transformation in Zirconium Hydrides
,”
Journal of Nuclear Materials
34
(
1970
): 125–134.
22.
Moore
K. E.
, “
Phase Relationships in the Alpha+Delta Region of the Zr-H System
,”
Journal of Nuclear Materials
32
(
1969
): 46–56.
23.
Long
F.
,
Badr
N. N.
,
Yao
Z.
, and
Daymond
M. R.
, “
Towards Resolving a Long Existing Phase Stability Controversy in the Zr-H, Ti-H systems
,”
Journal of Nuclear Materials
543
(
2021
): 152540,
24.
Puls
M. P.
,
The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components—Delayed Hydride Cracking
(
London, UK
:
Springer-Verlag
,
2014
).
25.
Daum
R. S.
,
Chu
Y. S.
, and
Motta
A. T.
, “
Identification and Quantification of Hydride Phases in Zircaloy-4 Cladding Using Synchrotron X-Ray Diffraction
,”
Journal of Nuclear Materials
392
(
2009
): 453–463,
26.
Shiman
O. V.
,
Tulk
E.
, and
Daymond
M. R.
, “
Synchrotron X-Ray Diffraction Study of Zirconium Hydride Distribution in Zr-2.5%Nb and Its Redistribution during Thermal Cycling
,”
Materials Characterization
136
(
2018
): 183–195,
27.
Han
G. M.
,
Zhao
Y. F.
,
Zhou
C. B.
,
Lin
D.-Y.
,
Zhu
X. Y.
,
Zhang
J.
,
Hu
S. Y.
, and
Song
H. F.
, “
Phase-Field Modeling of Stacking Structure Formation and Transition of δ-Hydride Precipitates in Zirconium
,”
Acta Materialia
165
(
2019
): 528–546,
28.
Coleman
C. E.
and
Hardie
D.
, “
The Hydrogen Embrittlement of α-Zirconium—A Review
,”
Journal of the Less Common Metals
11
(
1966
): 168–185,
29.
Gill
B. J.
,
Bailey
J. E.
, and
Cotterill
P.
, “
The Effects of Hydride Precipitates on the Mechanical Properties of Zirconium-Hydrogen Alloys
,”
Journal of the Less Common Metals
40
(
1975
): 129–138,
30.
Puls
M. P.
,
Shi
S. Q.
, and
Rabier
J.
, “
Experimental Studies of Mechanical Properties of Solid Zirconium Hydrides
,”
Journal of Nuclear Materials
336
(
2005
): 73–80,
31.
Cheadle
B. A.
,
Coleman
C. E.
, and
Ambler
J. F.
R.
, “
Prevention of Delayed Hydride Cracking in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: Seventh International Symposium
, ed.
Adamson
R. B.
and
Van Swam
L. F.
P.
(
West Conshohocken, PA
:
ASTM International
,
1987
), 224–240,
32.
Fanjoy
G. R.
, Pressure Tube Failure—Pickering NGS Unit 2, CNS-75 (Toronto, Canada:
Ontario Hydro
,
1984
).
33.
Christodoulou
N.
,
Turner
P. A.
,
Ho
E. T.
C.
,
Chow
C. K.
, and
Resta Levi
M.
, “
Anisotropy of Yielding in a Zr-2.5Nb Pressure Tube Material
,”
Metallurgical and Materials Transactions A
31
(
2000
), 409–420,
34.
Cockeram
B. V.
,
Leonard
K. J.
,
Byun
T. S.
,
Snead
L. L.
, and
Hollenbeck
J. L.
, “
Development of Microstructure and Irradiation Hardening of Zircaloy during Low Dose Neutron Irradiation at Nominally 377-440°C
,”
Journal of Nuclear Materials
449
(
2014
): 69–87,
35.
Cai
S.
,
Daymond
M. R.
, and
Holt
R. A.
, “
Deformation of High β-Phase Fraction Zr-Nb Alloys at Room Temperature
,”
Acta Materialia
60
(
2012
): 3355–3369,
36.
Fong
R. W.
L.
, “
Anisotropic Deformation of Zr-2.5Nb Pressure Tube Material at High Temperatures
,”
Journal of Nuclear Materials
440
(
2013
): 467–476,
37.
Grange
M.
,
Besson
J.
, and
Andrieu
E.
, “
Anisotropic Behavior and Rupture of Hydrided ZIRCALOY-4 Sheets
,”
Metallurgical and Materials Transactions A
31
(
2000
): 679–690,
38.
Guan
S.-H.
and
Liu
Z.-P.
, “
Anisotropic Kinetics of Solid Phase Transition from First Principles: Alpha–Omega Phase Transformation of Zr
,”
Physical Chemistry Chemical Physics
18
(
2016
): 4527–4534,
39.
Holt
R. A.
and
Ibrahim
E. F.
, “
Factors Affecting the Anisotropy of Irradiation Creep and Growth of Zirconium Alloys
,”
Acta Metallurgica
27
(
1979
): 1319–1328,
40.
Oviasuyi
R. O.
and
Klassen
R. J.
, “
Anisotropic Deformation of Zr Ion Irradiated Zr-2.5%Nb Micro-Pillars at 25°C
,”
Journal of Nuclear Materials
421
(
2012
): 54–57,
41.
Cheadle
B. A.
,
Ells
C. E.
, and
Evans
W.
, “
The Development of Texture in Zirconium Alloy Tubes
,”
Journal of Nuclear Materials
23
(
1967
): 199–208,
42.
Cheadle
B. A.
,
Aldridge
S. A.
, and
Ells
C. E.
, “
Development of Texture and Structure in Zr-2.5 wt%Nb Extruded Tubes
,”
Canadian Metallurgical Quarterly
11
(
1972
): 121–127,
43.
Lepage
A. D.
,
Ferris
W. A.
, and
Ledoux
G. A.
,
Procedure for Adding Hydrogen to Small Sections of Zirconium Alloys
(
Chalk River, Canada
:
Chalk River Laboratories
,
1998
).
44.
Was
G. S.
,
Busby
J. T
,
Allen
T.
,
Kenik
E. A.
,
Jensson
A.
,
Bruemmer
S. M.
,
Gan
J.
,
Edwards
A. D.
,
Scott
P. M.
, and
Andreson
P. L.
, “
Emulation of Neutron Irradiation Effects with Protons: Validation of Principle
,”
Journal of Nuclear Materials
300
(
2002
): 198–216,
45.
Dong
Q.
,
Qin
H.
,
Yao
Z.
, and
Daymond
M. R.
, “
Irradiation Damage and Hardening in Pure Zr and Zr-Nb Alloys at 573K from Self-Ion Irradiation
,”
Materials & Design
161
(
2019
): 147–159,
46.
Oono
N.
,
Kasada
R.
,
Higuchi
T.
,
Sakamoto
K.
,
Nakatsuka
M.
,
Hasegawa
A.
,
Kondo
S.
,
Matsui
H.
, and
Kimura
A.
, “
Irradiation Hardening and Microstructure Evolution of Ion-Irradiated Zr-Hydride
,”
Journal of Nuclear Materials
419
(
2011
): 366–370,
47.
Ziegler
J. F.
,
Ziegler
M. D.
, and
Biersack
J. P.
, “
The Stopping and Range of Ions in Matter
,”
Nuclear Instruments and Methods in Physics Research B
268
(
2010
): 1818–1823,
48.
Stoller
R. E.
,
Toloczko
M. B.
,
Was
G. S.
,
Certain
A. G.
,
Dwaraknath
S.
, and
Garner
F. A.
, “
On the Use of SRIM for Computing Radiation Damage Exposure
,”
Nuclear Instruments and Methods in Physics Research B
310
(
2013
): 75–80,
49.
Nix
W. D.
and
Gao
H.
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
Journal of the Mechanics and Physics of Solids
46
(
1998
): 411–425,
50.
Feng
G.
and
Nix
W. D.
, “
Indentation Size Effect in MgO
,”
Scripta Materialia
51
(
2004
): 599–603,
51.
Durst
K.
,
Backes
B.
, and
Göken
M.
, “
Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone
,”
Scripta Materialia
52
(
2005
): 1093–1097,
52.
Oliver
W. C.
and
Pharr
G. M.
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
Journal of Materials Research
7
(
1992
): 1564–1583,
53.
Jenkins
M. L.
and
Kirk
M. A.
, “
Characterisation of Radiation Damage by Transmission Electron Microscopy
” (
Boca Raton, FL
:
CRC Press
,
2000
).
54.
Cherubin
I. J.
S.
, “
Comprehensive Study on the Mechanical Properties of δ-Zirconium Hydride Grown in a Zr2.5Nb Matrix
” (PhD thesis,
Queen’s University
, Kingston, Ontario, Canada,
2022
).
55.
Gallaugher
M.
,
Peykov
D.
,
Brodusch
N.
,
Chromik
R. R.
,
Rodrigue
L.
,
Trudeau
M. L.
, and
Gauvin
R.
, “
Variations in Nanomechanical Properties of Back-End Zr-2.5Nb Pressure Tube Material
,”
Journal of Nuclear Materials
442
(
2013
): 116–123,
56.
Kese
K.
,
Olsson
P. A.
T.
,
Holston
A. M.
, and
Broitman
E.
, “
High Temperature Nanoindentation Hardness and Young's Modulus Measurement in a Neutron-Irradiated Fuel Cladding Material
,”
Journal of Nuclear Materials
487
(
2017
): 113–120,
57.
Cherubin
I. J.
S.
,
Topping
M.
, and
Daymond
M. R.
, “
Evaluation of Irradiation Hardening in Proton-Irradiated δ-Zirconium Hydride and Zr2.5Nb
,”
Journal of Nuclear Materials
562
(
2022
): 153600,
58.
Wang
Q.
,
Guo
N.
,
Long
F.
, and
Daymond
M. R.
, “
Effects of Heavy Ion Irradiation on Zr-2.5Nb Pressure Tube Alloy. I. Orientation Dependent Mechanical Response
,”
Journal of Applied Physics
125
(
2019
): 6–8,
59.
Khan
M. I.
,
St Lawrence
S.
, and
Klassen
R. J.
, “
Effect of Zr + Irradiation Damage and Crystal Orientation on the Uniaxial Deformation of Zr–2.5%Nb Micro-Pillars: Part 1, Deformation of Single-Phase αZr Micro-Pillars
,”
Canadian Metallurgical Quarterly
60
(
2021
): 28–40,
60.
Francis
E.
,
Prasath Babu
R.
,
Harte
A.
,
Martin
T. L.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
 et al
, “
Effect of Nb and Fe on Damage Evolution in a Zr-Alloy during Proton and Neutron Irradiation
,”
Acta Materialia
165
(
2019
): 603–614,
61.
Wang
Q.
,
Cochrane
C.
,
Long
F.
,
Yu
H.
, and
Daymond
M. R.
, “
Micropillar Compression Study on Heavy Ion Irradiated Zr-2.5Nb Pressure Tube Alloy
,”
Journal of Nuclear Materials
511
(
2018
): 487–495,
62.
Wang
Q.
,
Long
F.
,
Wang
Z.
,
Guo
N.
, and
Daymond
M. R.
, “
Orientation Dependent Evolution of Plasticity of Irradiated Zr-2.5Nb Pressure Tube Alloy Studied by Nanoindentation and Finite Element Modeling
,”
Journal of Nuclear Materials
512
(
2018
): 371–384,
63.
Long
F.
,
Balogh
L.
,
Brown
D.W.
,
Mosbrucker
P.
,
Skippon
T.
,
Judge
C. D.
, and
Daymond
M. R.
, “
Effect of Neutron Irradiation on Deformation Mechanisms Operating during Tensile Testing of Zr-2.5Nb
,”
Acta Materialia
102
(
2016
): 352–363,
64.
da Silva Cherubin
I. J.
,
Long
F.
, and
Daymond
M. R.
, “
High Temperature Hardness Testing of δ-Zirconium Hydride: Yield Stress Estimation by Analytical Models
,”
Journal of Nuclear Materials
560
(
2022
): 153424,
65.
Rico
A.
,
Martin-Rengel
M. A.
,
Ruiz-Hervias
J.
,
Rodriguez
J.
, and
Gomez-Sanchez
F. J.
, “
Nanoindentation Measurements of the Mechanical Properties of Zirconium Matrix and Hydrides in Unirradiated Pre-Hydrided Nuclear Fuel Cladding
,”
Journal of Nuclear Materials
452
(
2014
): 69–76,
66.
Nedim Cinbiz
M.
,
Balooch
M.
,
Hu
X.
,
Amroussia
A.
, and
Terrani
K.
, “
Nanoindentation Study of Bulk Zirconium Hydrides at Elevated Temperatures
,”
Journal of Alloys and Compounds
726
(
2017
): 41–48,
67.
Puls
M. P.
,
Shi
S. Q.
, and
Rabier
J.
, “
Experimental Studies of Mechanical Properties of Solid Zirconium Hydrides
,”
Journal of Nuclear Materials
336
(
2005
): 73–80,
68.
Dong
Q.
,
Qin
H.
,
Yao
Z.
, and
Daymond
M. R.
, “
Irradiation Damage and Hardening in Pure Zr and Zr-Nb Alloys at 573K from Self-Ion Irradiation
,”
Materials & Design
161
(
2019
): 147–159,
69.
Oono
N.
,
Kasada
R.
,
Higuchi
T.
,
Sakamoto
K.
,
Nakatsuka
M.
,
Hasegawa
A.
,
Kondo
S.
,
Iwata
N. Y.
,
Matsui
H.
, and
Kimura
A.
, “
Comparison of Irradiation Hardening and Microstructure Evolution in Ion-Irradiated Delta and Epsilon Hydrides
,”
Journal of Nuclear Materials
442
(
2013
): S826–S829,
70.
Wang
Q.
,
Balogh
L.
,
Dong
Q.
,
Guo
N.
,
Yao
Z.
, and
Daymond
M. R.
, “
Effects of Heavy Ion Irradiation on Zr-2.5Nb Pressure Tube Alloy. II. Orientation Dependent Dislocation Loop Propagation and Elemental Redistribution
,”
Journal of Applied Physics
125
(
2019
): 085109,
71.
Topping
M.
,
Harte
A.
,
Ungár
T.
,
Race
C. P.
,
Dumbill
S.
,
Frankel
P.
, and
Preuss
M.
, “
The Effect of Irradiation Temperature on Damage Structures in Proton-Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
514
(
2019
): 358–367,
72.
Bacon
D. J.
,
Kocks
U. F.
, and
Scattergood
R. O.
, “
The Effect of Dislocation Self-Interaction on the Orowan Stress
,”
Philosophical Magazine
28
(
1973
): 1241–1263,
73.
Singh
B. N.
,
Horsewell
A.
, and
Toft
P.
, “
Effects of Neutron Irradiation on Microstructure and Mechanical Properties of Pure Iron
,”
Journal of Nuclear Materials
271–272
(
1999
): 97–101,
74.
Robach
J. S.
,
Robertson
I. M.
,
Wirth
B. D.
, and
Arsenlis
A.
, “
In-Situ Transmission Electron Microscopy Observations and Molecular Dynamics Simulations of Dislocation-Defect Interactions in Ion-Irradiated Copper
,”
Philosophical Magazine
83
(
2003
): 955–967,
75.
Onimus
F.
,
Béchade
J. L.
,
Duguay
C.
,
Gilbon
D.
, and
Pilvin
P.
, “
Investigation of Neutron Radiation Effects on the Mechanical Behavior of Recrystallized Zirconium Alloys
,”
Journal of Nuclear Materials
358
(
2006
): 176–189,
76.
Onimus
F.
,
Monnet
I.
,
Béchade
J. L.
,
Prioul
C.
, and
Pilvin
P.
, “
A Statistical TEM Investigation of Dislocation Channeling Mechanism in Neutron Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
328
(
2004
): 165–179,
77.
Yamauchi
A.
and
Ogata
K.
, “
A Study on Macroscopic Fuel Cladding Ductile-to-Brittle Transition at 300°C Induced by Radial Hydrides
,”
Journal of Nuclear Science and Technology
57
(
2020
): 301–311,
78.
Singh
R. N.
,
Viswanathan
U. K.
,
Kumar
S.
,
Satheesh
P. M.
,
Anantharaman
S.
,
Chakravartty
J. K.
, and
Ståhle
P.
, “
Influence of Hydrogen Content on Impact Toughness of Zr-2.5Nb Pressure Tube Alloy
,”
Nuclear Engineering and Design
241
(
2011
): 2425–2436,
79.
Bertolino
G.
,
Meyer
G.
, and
Perez Ipiña
J.
, “
Effects of Hydrogen Content and Temperature on Fracture Toughness of Zircaloy-4
,”
Journal of Nuclear Materials
320
(
2003
): 272–279,
80.
Bai
J. B.
, “
Effect of Hydriding Temperature and Strain Rate on the Ductile-Brittle Transition in β Treated Zircaloy-4
,”
Journal of Nuclear Science and Technology
33
(
1996
): 141–146,
81.
Nikulin
S. A.
,
Shtremel
M. A.
,
Khanzhin
V. G.
,
Fateev
B. M.
, and
Markelov
V. A.
, “
Influence of Hydrides on Ductile Fracture in the Zr-2.5 Nb Alloy
,”
Nuclear Science and Engineering
115
(
1993
): 193–204,
82.
Huang
J. H.
,
Huang
S. P.
, and
Ho
C. S.
, “
The Ductile-Brittle Transition Of A Zirconium Alloy Due to Hydrogen
,”
Scripta Metallurgica et Materiala
28
(
1993
): 1–6.
83.
Kim
J. S.
,
Kim
H. A.
,
Kang
S. Y.
, and
Kim
Y. S.
, “
Effects of Hydride Rim on the Ductility of Zircaloy-4 Cladding
,”
Journal of Nuclear Materials
523
(
2019
): 383–390,
84.
Arsene
S.
,
Bai
J. B.
, and
Bompard
P.
, “
Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part III. Mechanical Behavior of Hydride in Stress-Relieved Annealed and Recrystallized ZIRCALOYs at 20°C and 300°C
,”
Metallurgical and Materials Transactions A
34
(
2003
): 553–566.
85.
Bind
A. K.
,
Singh
R. N.
,
Sunil
S.
, and
Chattopadhyay
J.
, “
Effect of Deuterium Content on Fracture Toughness of Zr-2.5Nb Pressure Tube Material in the Temperature Range of Ambient to 300°C
,”
Journal of Nuclear Materials
496
(
2017
): 182–192,
86.
Qin
W.
,
Szpunar
J. A.
, and
Kozinski
J.
, “
Hydride-Induced Degradation of Zirconium Alloys: A Criterion for Complete Ductile-to-Brittle Transition and Its Dependence on Microstructure
,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
471
(
2015
):
87.
Kim
J. S.
,
Kim
T. H.
,
Kook
D. H.
, and
Kim
Y. S.
, “
Effects of Hydride Morphology on the Embrittlement of Zircaloy-4 Cladding
,”
Journal of Nuclear Materials
456
(
2015
): 235–245,
88.
Bertolino
G.
,
Perez Ipiña
J.
, and
Meyer
G.
, “
Influence of the Crack-Tip Hydride Concentration on the Fracture Toughness of Zircaloy-4
,”
Journal of Nuclear Materials
348
(
2006
): 205–212,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal