Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

This work indicates that the matrix content of the alloying elements iron, chromium, and nickel in as-produced commercial Zircaloy-2-type materials is lower than what has been indicated by many previous studies. Atom probe tomography in voltage pulse mode was used to study the matrix content of solutes in Zircaloy-2 of type LK3/L and a similar model alloy, called Alloy 2, of the same heat treatment. Both alloys were analyzed in the as-produced state and after reactor exposure. In the as-produced materials, the concentrations of iron, chromium, and nickel were all below the detection limits of around 10 wt. ppm. After reactor exposure, these alloying elements were observed to reside in clusters at <a> loops, and the matrix content (including clusters) of iron had increased to about 1,200 wt. ppm in the fueled region of the rod and to about half that value in the plenum region. The chromium content in the fueled region was approximately 100 wt. ppm, and the nickel content was approximately 200 wt. ppm. In the plenum region, the content of these elements was lower. However, due to an uneven distribution of clusters, there was a wide scatter in the measured concentrations in the irradiated materials. Additionally, the matrix concentrations of solute elements in (nonirradiated) Zircaloy-2 were investigated for a series of samples subjected to α annealing at 770°C followed by cooling at different rates. From these measurements, the solubilities at 770°C were estimated to be around 65 wt. ppm for chromium, at least 37 wt. ppm for iron, and below 9 wt. ppm for nickel. Slow cooling resulted in virtually no iron, chromium, or nickel in the matrix. The concentration of aluminum in the matrix was observed to be between 10 and 20 wt. ppm for all α-annealed samples and for the as-produced materials of commercial heat treatment.

1.
Cox
B.
, “
Some Thoughts on the Mechanisms of In-Reactor Corrosion of Zirconium Alloys
,”
Journal of Nuclear Materials
336
(
2005
): 331–368,
2.
Chemelle
P.
,
Knorr
D. B.
,
van der Sande
J. B.
, and
Pelloux
R. M.
, “
Morphology and Composition of Second Phase Particles in Zircaloy-2
,”
Journal of Nuclear Materials
113
(
1983
): 58–64,
3.
Griffiths
M.
,
Gilbert
R. W.
, and
Carpenter
G. J.
C.
, “
Phase Instability, Decomposition and Redistribution of Intermetallic Precipitates in Zircaloy-2 and -4 during Neutron Irradiation
,”
Journal of Nuclear Materials
150
(
1987
): 53–66,
4.
Meng
X.
and
Northwood
D. O.
, “
Second Phase Particles in Zircaloy-2
,”
Journal of Nuclear Materials
168
(
1989
): 125–136,
5.
Cox
B.
and
Sheikh
H. I.
, “
Redistribution of the Alloying Elements during Zircaloy-2 Oxidation
,”
Journal of Nuclear Materials
249
(
1997
): 17–32,
6.
Hudson
D.
and
Smith
G. D.
W.
, “
Initial Observation of Grain Boundary Solute Segregation in a Zirconium Alloy (ZIRLO) by Three-Dimensional Atom Probe
,”
Scripta Materialia
61
(
2009
): 411–414,
7.
Baris
A.
, “
Increased Hydrogen Uptake of Zirconium Based Claddings at High Burnup
” (PhD thesis,
University of Birmingham
,
2019
).
8.
Lemaignan
C.
and
Motta
A. T.
, “
Zirconium Alloys in Nuclear Applications
,” in
Materials Science and Technology: A Comprehensive Treatment, Vol. 10B: Nuclear Materials, Part II
, ed.
Cahn
R.W.
,
Haasen
P.
, and
Kramer
E. J.
(
Weinheim, Germany
:
Wiley-VCH
,
1994
), 1–51.
9.
Rubenstein
L. S.
,
Goodwin
J. G.
, and
Shubert
F. L.
, “
Effect of Five Impurities on the High Temperature Water and Steam Corrosion Resistance of Zircaloy-2
,”
Corrosion
18
(
1962
): 45t–54t,
10.
Holt
R. A.
, “
The Beta to Alpha Phase Transformation in Zircaloy-4
,”
Journal of Nuclear Materials
35
(
1970
): 322–334,
11.
Ivermark
M.
, “
Characterisation of the Matrix Chemistry in Zirconium Alloys
” (PhD thesis,
University of Manchester
,
2009
).
12.
Hutchinson
B.
,
Lehtinen
B.
,
Limbäck
M.
, and
Dahlbäck
M.
, “
A Study of the Structure and Chemistry in Zircaloy-2 and the Resulting Oxide after High Temperature Corrosion
,” in
Zirconium in the Nuclear Industry: 15th International Symposium
, ed.
Kammenzind
B.
and
Limbäck
M.
(
West Conshohocken, PA
:
ASTM International
,
2009
), 269–284,
13.
Yao
M. Y.
,
Shen
Y. F.
,
Li
Q.
,
Peng
J. C.
,
Zhou
B. X.
, and
Zhang
J. L.
, “
The Effect of Final Annealing after β-Quenching on the Corrosion Resistance of Zircaloy-4 in Lithiated Water with 0.04M LiOH
,”
Journal of Nuclear Materials
435
(
2013
): 63–70,
14.
Yilmazbayhan
A.
,
Delaire
O.
,
Motta
A. T.
,
Birtcher
R. C.
,
Maser
J. M.
, and
Lai
B.
, “
Determination of the Alloying Content in the Matrix of Zr Alloys Using Synchrotron Radiation Microprobe X-Ray Fluorescence
,”
Journal of Nuclear Materials
321
(
2003
): 221–232,
15.
Zou
H.
,
Hood
G. M.
,
Roy
J. A.
,
Packwood
R. H.
, and
Weatherall
V.
, “
Solute Distribution in Annealed Zircaloy-2 and Zr-2.5Nb
,”
Journal of Nuclear Materials
208
(
1994
): 159–165,
16.
Wadman
B.
and
Andrén
H.-O.
, “
Microanalysis of the Matrix and the Oxide-Metal Interface of Uniformly Corroded Zircaloy
,” in
Zirconium in the Nuclear Industry: Ninth International Symposium
, ed.
Eucken
C. M.
and
Garde
A. M.
(
West Conshohocken, PA
:
ASTM International
,
1991
), 461–475,
17.
Kruger
R. M.
,
Adamson
R. B.
, and
Brenner
S. S.
, “
Effects of Microchemistry and Precipitate Size on Nodular Corrosion Resistance of Zircaloy-2
,”
Journal of Nuclear Materials
189
(
1992
): 193–200,
18.
Merle
P.
,
Loucif
K.
,
Adami
L.
, and
Borrelly
R.
, “
Study of the Microstructural Evolution of α-Quenched or Cold-Rolled Zirconium Alloys during Isothermal Agings between 20 and 400°C
,”
Journal of Nuclear Materials
208
(
1994
): 135–143,
19.
Clifton
P. H.
,
Gribb
T. J.
,
Gerstl
S. S.
A.
,
Ulfig
R. U.
, and
Larson
D. J.
, “
Performance Advantages of a Modern, Ultra-High Mass Resolution Atom Probe
,”
Microscopy and Microanalysis
14
(
2008
): 454–455,
20.
Andersson
T.
,
Thorvaldsson
T.
,
Wilson
A.
, and
Wardle
A. M.
, “
Influence of Thermal Processing and Microstructure on the Corrosion Behaviour of Zircaloy-4 Tubing
,” in
Improvements in Water Reactor Fuel Technology and Utilization
(
Vienna, Austria
:
International Atomic Energy Agency
,
1987
), 435–449.
21.
Standard Specification for Zirconium and Zirconium Alloy Ingots for Nuclear Application
, ASTM B350/B350M-11 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2011
),
22.
Thompson
K.
,
Lawrence
D.
,
Larson
D. J.
,
Olson
J. D.
,
Kelly
T. F.
, and
Gorman
B.
, “
In Situ Site-Specific Specimen Preparation for Atom Probe Tomography
,”
Ultramicroscopy
107
(
2007
): 131–139,
23.
Cockeram
B. V.
,
Leonard
K. J.
,
Snead
L. L.
, and
Miller
M. K.
, “
The Use of a Laser-Assisted Local Electrode Atom Probe and TEM to Examine the Microstructure of Zircaloy and Precipitate Structure Following Low Dose Neutron Irradiation at Nominally 358 °C
,”
Journal of Nuclear Materials
433
(
2013
): 460–478,
24.
Breen
A. J.
,
Mouton
I.
,
Lu
W.
,
Wang
S.
,
Szczepaniak
A.
,
Kontis
P.
,
Stephenson
L. T.
 et al
, “
Atomic Scale Analysis of Grain Boundary Deuteride Growth Front in Zircaloy-4
,”
Scripta Materialia
156
(
2018
): 42–46,
25.
Mouton
I.
,
Breen
A. J.
,
Wang
S.
,
Chang
Y.
,
Szczepaniak
A.
,
Kontis
P.
,
Stephenson
L. T.
 et al
, “
Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4
,”
Microscopy and Microanalysis
25
(
2019
): 481–488,
26.
Kingham
D. R.
, “
The Post-Ionization of Field Evaporated Ions: A Theoretical Explanation of Multiple Charge States
,”
Surface Science
116
(
1982
): 273–301,
27.
Thuvander
M.
and
Andrén
H.-O.
, “
Methods of Quantitative Matrix Analysis of Zircaloy-2
,”
Ultramicroscopy
111
(
2011
): 711–714,
28.
Eriksson
J.
,
Sundell
G.
,
Tejland
P.
,
Andrén
H.-O.
, and
Thuvander
M.
, “
Nanoscale Chemistry of Zircaloy-2 Exposed to Three and Nine Annual Cycles of Boiling Water Reactor Operation—An Atom Probe Tomography Study
,”
Journal of Nuclear Materials
561
(
2022
): 153537,
29.
Shen
H. H.
,
Zu
X. T.
,
Chen
B.
,
Huang
C. Q.
, and
Sun
K.
, “
Direct Observation of Hydrogenation and Dehydrogenation of a Zirconium Alloy
,”
Journal of Alloys and Compounds
659
(
2016
): 23–30,
30.
Hanlon
S. M.
,
Persaud
S. Y.
,
Long
F.
,
Korinek
A.
, and
Daymond
M. R.
, “
A Solution to FIB Induced Artefact Hydrides in Zr Alloys
,”
Journal of Nuclear Materials
515
(
2019
): 122–134,
31.
Sundell
G.
,
Thuvander
M.
, and
Andrén
H.-O.
, “
Hydrogen Analysis in APT: Methods to Control Adsorption and Dissociation of H2
,”
Ultramicroscopy
132
(
2013
): 285–289,
32.
Currie
L. A.
, “
Limits for Qualitative Detection and Quantitative Determination. Application to Radiochemistry
,”
Analytical Chemistry
40
(
1968
): 586–593,
33.
La Fontaine
A.
,
Piazolo
S.
,
Trimby
P.
,
Yang
L.
, and
Cairney
J. M.
, “
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study
,”
Microscopy and Microanalysis
23
(
2017
): 404–413,
34.
Sundell
G.
,
Thuvander
M.
,
Tejland
P.
,
Dahlbäck
M.
,
Hallstadius
L.
, and
Andrén
H.-O.
, “
Redistribution of Alloying Elements in Zircaloy-2 after In-Reactor Exposure
,”
Journal of Nuclear Materials
454
(
2014
): 178–185,
35.
Harte
A.
,
Topping
M.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
Nano-Scale Chemical Evolution in a Proton-and Neutron-Irradiated Zr Alloy
,”
Journal of Nuclear Materials
487
(
2017
): 30–42,
36.
Harte
A.
,
Jädernäs
D.
,
Topping
M.
,
Frankel
P.
,
Race
C. P.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
The Effect of Matrix Chemistry on Dislocation Evolution in an Irradiated Zr Alloy
,”
Acta Materialia
130
(
2017
): 69–82,
37.
Sawabe
T.
and
Sonoda
T.
, “
Evolution of Nanoscopic Iron Clusters in Irradiated Zirconium Alloys with Different Iron Contents
,”
Journal of Nuclear Science and Technology
55
(
2018
): 1110–1118,
38.
Hood
G. M.
, “
Point Defect Diffusion in α-Zr
,”
Journal of Nuclear Materials
159
(
1988
): 149–175,
39.
Borrelly
R.
,
Merle
P.
, and
Adami
L.
, “
Study of the Solubility of Iron in Zirconium by Thermoelectric Power Measurements
,”
Journal of Nuclear Materials
170
(
1990
): 147–156,
40.
Zou
H.
,
Hood
G. M.
,
Roy
J. A.
,
Schultz
R. J.
, and
Jackman
J. A.
, “
The Solid Solubility of Fe in α-Zr: A Secondary Ion Mass Spectrometry Study
,”
Journal of Nuclear Materials
210
(
1994
): 239–243,
41.
Zou
H.
,
Hood
G. M.
,
Nakajima
H.
,
Roy
J. A.
, and
Schultz
R. J.
, “
The Solid Solubility of Ni and Co in α-Zr: A Secondary Ion Mass Spectrometry Study
,”
Journal of Nuclear Materials
223
(
1995
): 186–188,
42.
Murray
J.
,
Peruzzi
A.
, and
Abriata
J. P.
, “
The Al-Zr (Aluminum-Zirconium) System
,”
Journal of Phase Equilibria
13
(
1992
): 277–291,
43.
Eriksson
J.
,
Sundell
G.
,
Tejland
P.
,
Andrén
H.-O.
, and
Thuvander
M.
, “
An Atom Probe Tomography Study of the Chemistry of Radiation-Induced Dislocation Loops in Zircaloy-2 Exposed to Boiling Water Reactor Operation
,”
Journal of Nuclear Materials
550
(
2021
): 152923,
44.
Jenkins
B. M.
,
Haley
J.
,
Moody
M. P.
,
Hyde
J. M.
, and
Grovenor
C. R.
M.
, “
APT and TEM Study of Behaviour of Alloying Elements in Neutron-Irradiated Zirconium-Based Alloys
,”
Scripta Materialia
208
(
2022
): 114323,
45.
Ungár
T.
,
Frankel
P.
,
Ribárik
G.
,
Race
C. P.
, and
Preuss
M.
, “
Size-Distribution of Irradiation-Induced Dislocation-Loops in Materials Used in the Nuclear Industry
,”
Journal of Nuclear Materials
550
(
2021
): 152945,
46.
Sundell
G.
,
Thuvander
M.
, and
Andrén
H.-O.
, “
Enrichment of Fe and Ni at Metal and Oxide Grain Boundaries in Corroded Zircaloy-2
,”
Corrosion Science
65
(
2012
): 10–12,
47.
Sawabe
T.
,
Sonoda
T.
, and
Kitajima
S.
, “
Analysis Method of Matrix and Second Phase Particles in Zircaloy-2 by Atom Probe Tomography
,”
Progress in Nuclear Energy
82
(
2015
): 159–164,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal