Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

This article proposes a detailed study of the recrystallization of Zircaloy‐4 under hot forming conditions by means of experimental and numerical tools. Thermomechanical tests and characterization campaigns that have been necessary for this work are described. Then, the different microstructure evolution mechanisms are characterized, from the simplest one to the most complex. Grain‐growth kinetics are quantified, and the influence of the second‐phase particle population is analyzed. A complete study of dynamic and postdynamic recrystallization is provided. The occurrence of a continuous mechanism is confirmed, and the influence of thermomechanical conditions upon recrystallization is assessed. Later, the numerical framework used to simulate grain growth and continuous dynamic and postdynamic recrystallization is presented. After having successfully reproduced the grain‐coarsening kinetics with and without second‐phase particles, the model is used to describe continuous dynamic recrystallization and postdynamic recrystallization from an initial equiaxed and fully recrystallized microstructure. The agreement between experimental and numerical results is assessed in detail. Finally, postdynamic recrystallization is simulated, starting from two deformed microstructures characterized by the electron backscatter diffraction technique and immersed into simulations. This allows capturing and discussing the influence of the initial microstructure.

1.
Bossis
P.
,
Lefebvre
F.
,
Barberis
P.
, and
Galerie
A.
, “
Corrosion of Zirconium Alloys: Link between the Metal/Oxide Interface Roughness, the Degradation of the Protective Oxide Layer and the Corrosion Kinetics
,”
Materials Science Forum
369
(
2001
): 255–262,
2.
Toffolon‐Masclet
C.
,
Guilbert
T.
, and
Brachet
J.
, “
Study of Secondary Intermetallic Phase Precipitation/Dissolution in Zr Alloys by High Temperature–High Sensitivity Calorimetry
,”
Journal of Nuclear Materials
372
, no.
2
(
2008
): 367–378,
3.
Chauvy
C.
,
Barberis
P.
, and
Montheillet
F.
, “
Microstructure Transformation during Warm Working of β‐Treated Lamellar Zircaloy‐4 within the Upper α‐Range
,”
Materials Science and Engineering: A
431
, no.
1
(
2006
): 59–67,
4.
Vanderesse
N.
, “
Morphologie et Déformation à Chaud de Microstructures Lamellaires dans les Alliages de Zirconium et de Titane
” (PhD thesis,
Ecole des Mines de Saint‐Etienne
,
2008
), https://web.archive.org/web/20220317104638/http://www.theses.fr/2008EMSE0018
5.
Ben Ammar
Y.
, “
Traitements Thermomécaniques des Colonies de Lamelles Parallèles du Zircaloy‐4 Trempé‐β
” (PhD thesis,
Ecole des Mines de Saint‐Etienne
,
2012
), https://web.archive.org/web/20220317104651/http://www.theses.fr/2012EMSE0676
6.
Gaillac
A.
and
Barberis
P.
, “
Numerical Modeling of Zirconium Alloys Hot Extrusion
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R.
and
Motta
A.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 27–150,
7.
Gaillac
A.
,
Lemaignan
C.
, and
Barberis
P.
, “
Damage Build‐Up in Zirconium Alloys during Mechanical Processing: Application to Cold Pilgering
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2011
), 244–268,
8.
Rollett
A.
,
Rohrer
G. S.
, and
Humphreys
J.
,
Recrystallization and Related Annealing Phenomena
, 3rd ed. (
New York, NY
:
Elsevier
,
2017
).
9.
Huang
K.
and
Logé
R.
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Materials & Design
111
(
2016
): 548–574,
10.
Logé
R.
,
Signorelli
J.
,
Chastel
Y.
,
Perrin
M.
, and
Lebensohn
R.
, “
Sensitivity of α‐Zy4 High Temperature Deformation Textures to the β‐Quenched Precipitate Structure and to Recrystallization: Application to Hot Extrusion
,”
Acta Materialia
48
, no.
15
(
2000
): 3917–3930,
11.
Dunlop
J.
,
Bréchet
Y.
,
Legras
L.
, and
Estrin
Y.
, “
Dislocation Density‐Based Modelling of Plastic Deformation of Zircaloy‐4
,”
Materials Science and Engineering: A
443
, no.
1
(
2007
): 77–86,
12.
Dunlop
J.
,
Bréchet
Y.
,
Legras
L.
, and
Zurob
H.
, “
Modelling Isothermal and Non‐Isothermal Recrystallisation Kinetics: Application to Zircaloy‐4
,”
Journal of Nuclear Materials
366
, no.
1
(
2007
): 178–186,
13.
Gaudout
B.
, “
Modeling of Microstructure Evolutions and Study of Solid Film Lubrication during Hot Extrusion of Zirconium Alloys
” (PhD thesis,
Ecole des Mines de Paris
,
2009
).
14.
Gourdet
S.
and
Montheillet
F.
, “
A Model of Continuous Dynamic Recrystallization
,”
Acta Materialia
51
, no.
9
(
2003
): 2685–2699,
15.
Flipon
B.
,
Grand
V.
,
Murgas
B.
,
Gaillac
A.
,
Nicolaÿ
A.
,
Bozzolo
N.
, and
Bernacki
M.
, “
Grain Size Characterization in Metallic Alloys Using Different Microscopy and Post‐Processing Techniques
,”
Materials Characterization
174
(
2021
): 110977,
16.
Bachmann
F.
,
Hielscher
R.
, and
Schaeben
H.
, “
Grain Detection from 2d and 3d EBSD Data—Specification of the MTEX Algorithm
,”
Ultramicroscopy
111
, no.
12
(
2011
): 1720–1733.
17.
Hielscher
R.
,
Silbermann
C. B.
,
Schmidl
E.
, and
Ihlemann
J.
, “
Denoising of Crystal Orientation Maps
,”
Journal of Applied Crystallography
52
, no.
5
(
2019
): 984–996,
18.
Pantleon
W.
, “
Resolving the Geometrically Necessary Dislocation Content by Conventional Electron Backscattering Diffraction
,”
Scripta Materialia
58
, no.
11
(
2008
): 994–997,
19.
Smith
C.
, “
Zener Pinning
,”
Transactions of the Metallurgical Society of AIME
175
(
1948
): 15–51.
20.
Zener
C.
, “
Theory of Growth of Spherical Precipitates from Solid Solution
,”
Journal of Applied Physics
20
, no.
10
(
1949
): 950–953,
21.
Manohar
P. A.
,
Ferry
M.
, and
Chandra
T.
, “
Five Decades of the Zener Equation
,”
ISIJ International
38
, no.
9
(
1998
): 913–924,
22.
Zhang
J.
,
Yi
Y.
,
Huang
S.
,
Mao
X.
,
He
H.
,
Tang
J.
,
Guo
W.
, and
Dong
F.
, “
Dynamic Recrystallization Mechanisms of 2195 Aluminum Alloy during Medium/High Temperature Compression Deformation
,”
Materials Science and Engineering: A
804
(
2021
): 140650,
23.
Hadadzadeh
A.
,
Mokdad
F.
,
Wells
M.
, and
Chen
D.
, “
A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast‐Homogenized Mg‐Zn‐Zr Alloy Using Electron Backscattered Diffraction
,”
Materials Science and Engineering: A
709
(
2018
): 285–289,
24.
Hitti
K.
,
Laure
P.
,
Coupez
T.
,
Silva
L.
, and
Bernacki
M.
, “
Precise Generation of Complex Statistical Representative Volume Elements (RVES) in a Finite Element Context
,”
Computational Materials Science
61
(
2012
): 224–238,
25.
Bernacki
M.
,
Chastel
Y.
,
Coupez
T.
, and
Logé
R.
, “
Level Set Framework for the Numerical Modelling of Primary Recrystallization in Polycrystalline Materials
,”
Scripta Materialia
58
, no.
12
(
2008
): 1129–1132,
26.
Bernacki
M.
,
Logé
R.
, and
Coupez
T.
, “
Level Set Framework for the Finite‐Element Modelling of Recrystallization and Grain Growth in Polycrystalline Materials
,”
Scripta Materialia
64
, no.
6
(
2011
): 525–528,
27.
Hillert
M.
, “
Inhibition of Grain Growth by Second‐Phase Particles
,”
Acta Metallurgica
36
, no.
12
(
1988
): 3177–3181,
28.
Agnoli
A.
,
Bozzolo
N.
,
Logé
R.
,
Franchet
J.‐M.
,
Laigo
J.
, and
Bernacki
M.
, “
Development of a Level Set Methodology to Simulate Grain Growth in the Presence of Real Secondary Phase Particles and Stored Energy—Application to a Nickel‐Base Superalloy
,”
Computational Materials Science
89
(
2014
): 233–241,
29.
Scholtes
B.
,
Boulais‐Sinou
R.
,
Settefrati
A.
,
Pino Muñoz
D.
,
Poitrault
I.
,
Montouchet
A.
,
Bozzolo
N.
, and
Bernacki
M.
, “
3D Level Set Modeling of Static Recrystallization Considering Stored Energy Fields
,”
Computational Materials Science
122
(
2016
): 57–71,
30.
Maire
L.
,
Fausty
J.
,
Bernacki
M.
,
Bozzolo
N.
,
De Micheli
P.
, and
Moussa
C.
, “
A New Topological Approach for the Mean Field Modeling of Dynamic Recrystallization
,”
Materials & Design
146
(
2018
): 194–207,
31.
Laasraoui
A.
and
Jonas
J.
, “
Prediction of Steel Flow Stresses at High Temperatures and Strain Rates
,”
Metallurgical Transactions A
22
, no.
7
(
1991
): 1545–1558,
32.
Murgas
B.
,
Florez
S.
,
Bozzolo
N.
,
Fausty
J.
, and
Bernacki
M.
, “
Comparative Study and Limits of Different Level‐Set Formulations for the Modeling of Anisotropic Grain Growth
,”
Materials
14
, no.
14
(
2021
): 3883,
33.
Grand
V.
,
Flipon
B.
,
Murgas
B.
,
Gaillac
A.
, and
Bernacki
M.
, “
Simulation of Continuous Dynamic Recrystallization Using a Level-Set Method
,”
Materials
15
, no.
15
(
2022
): 8547,
34.
Dieter
G. E.
and
Bacon
D. J.
,
Mechanical Metallurgy
, vol.
3
(
New York, NY
:
McGraw‐Hill
,
1976
).
35.
Scholtes
B.
,
Shakoor
M.
,
Settefrati
A.
,
Bouchard
P.‐O.
,
Bozzolo
N.
, and
Bernacki
M.
, “
New Finite Element Developments for the Full Field Modeling of Microstructural Evolutions Using the Level‐Set Method
,”
Computational Materials Science
109
(
2015
): 388–398,
36.
Maire
L.
,
Scholtes
B.
,
Moussa
C.
,
Bozzolo
N.
,
Muñoz
D. P.
,
Settefrati
A.
, and
Bernacki
M.
, “
Modeling of Dynamic and Post‐Dynamic Recrystallization by Coupling a Full Field Approach to Phenomenological Laws
,”
Materials & Design
133
(
2017
): 498–519,
37.
Burke
J.
and
Turnbull
D.
, “
Recrystallization and Grain Growth
,”
Progress in Metal Physics
3
(
1952
): 220–292,
38.
Alvarado
K.
,
Janeiro
I.
,
Florez
S.
,
Flipon
B.
,
Franchet
J.‐M.
,
Locq
D.
,
Dumont
C.
,
Bozzolo
N.
, and
Bernacki
M.
, “
Dissolution of the Primary γ′ Precipitates and Grain Growth during Solution Treatment of Three Nickel Base Superalloys
,”
Metals
11
, no.
12
,
39.
Alvarado
K.
,
Florez
S.
,
Flipon
B.
,
Bozzolo
N.
, and
Bernacki
M.
, “
A Level Set Approach to Simulate Grain Growth with an Evolving Population of Second Phase Particles
,”
Modelling and Simulation in Materials Science and Engineering
29
, no.
3
(
2021
): 035009,
40.
Ruiz Sarrazola
D.
,
Pino Munoz
D.
, and
Bernacki
M.
, “
A New Numerical Framework for the Full Field Modeling of Dynamic Recrystallization in a CPFEM Context
,”
Computational Materials Science
179
(
2020
): 109645,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal