Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 20th International Symposium
Editor
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chairperson and STP Editor
1
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
Michael Preuss
Michael Preuss
Symposium Chair and STP Editor
2
The University of Manchester Manchester
,
GB
;
Monash University
,
Clayton/Melbourne,
AU
Search for other works by this author on:
ISBN:
978-0-8031-7737-6
No. of Pages:
928
Publisher:
ASTM International
Publication date:
2023

Since the introduction of Zircaloys as light water reactor (LWR) nuclear fuel cladding materials about 60 years ago, significant irradiation experience has been accumulated on zirconium alloys. The need for interim dry storage of spent nuclear fuel was also not known then. As a result, the requirements determining the use of zirconium alloys for LWR fuel cladding have increased significantly beyond the initial focus on waterside corrosion resistance, oxygen pickup, and oxygen embrittlement. These additional evolving factors include hydrogen pickup, hydride embrittlement, hydride reorientation during dry storage, microstructural stability under neutron irradiation, irradiation-induced dimensional changes (growth and creep), the amount of hydrogen generated under accident conditions, evaluation of loss-of-coolant accident embrittlement due to oxygen and hydrogen, evaluation of loss-of-coolant accident breakaway oxidation, and evaluation of response to the reactivity insertion accidents. The impact of these evolving factors on the current zirconium alloys (composition, processing, and microstructure) are discussed in this paper. Summaries of selected past contributions of the author related to zirconium alloy material understanding for improvement of their LWR performance are presented. Because the continued use of zirconium alloys in the nuclear industry is related to the survival and expansion of nuclear power, factors critical for the expansion of nuclear power are also discussed for the current situation in the United States. Corrective actions taken by the nuclear industry to mitigate the consequences of the three major accidents in power reactors are discussed, as are ways to maintain the use of zirconium in nuclear power in the future.

1.
Rickover
H. G.
, “
The Decision to Use Zirconium in Nuclear Reactors
,” in
Zirconium Production and Technology: The Kroll Medal Papers 1975–2010
, ed.
Adamson
R. B.
(
West Conshohocken, PA
:
ASTM International
,
2010
), 9–17.
2.
Garzarolli
F.
,
Cox
B.
, and
Rudling
P.
, “
Optimization of Zry-2 for High Burnups
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Limback
M.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2011
), 711–728,
3.
Shishov
V. N.
, “
The Evolution of Microstructure and Deformation Stability in Zr-Nb-(Sn,Fe) Alloys under Neutron Irradiation
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Limback
M.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2011
), 37–66,
4.
Chabretou
V.
,
Hoffmann
P. B.
,
Trapp-Pritsching
S.
,
Garner
G.
,
Barberis
P.
,
Rebeyrolle
V.
, and
Vermoyal
J. J.
, “
Ultra Low Tin Quaternary Alloys PWR Performance—Impact of Tin Content on Corrosion Resistance, Irradiation Growth, and Mechanical Properties
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Limback
M.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2011
), 801–826,
5.
Frankel
P. G.
,
Wei
J.
,
Francis
E. M.
,
Forsey
A.
,
Ni
N.
,
Lozano-Perez
S.
,
Ambard
A.
 et al
, “
Effect of Sn on Corrosion Mechanisms in Advanced Zr-Cladding for Pressurized Water Reactors
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
,
ASTM International
,
2015
), 404–437,
6.
Markelov
V. A.
,
Novikov
V.
,
Shevyakov
A.
,
Gusev
A.
,
Peregud
M.
,
Konkov
V.
,
Eremin
S.
,
Pokrovsky
A.
, and
Obukhov
A.
, “
Preliminary Irradiation Effect on Corrosion Resistance of Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 857–880,
7.
Doriot
S.
,
Verhaeghe
B.
,
Soniak-Defresne
A.
,
Bossis
P.
,
Gilbon
D.
,
Chabretou
V.
,
Mardon
J.-P.
,
Ton-That
M.
, and
Ambard
A.
, “
Microstructural Evolution of Q12TM Alloy Irradiated in PWRs and Comparison with Other Zr Base Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 823–856,
8.
Topping
M.
,
Harte
A.
,
Frankel
P.
,
Race
C.
,
Sundell
G.
,
Thuvander
M.
,
Andren
H.-O.
 et al
, “
The Effect of Iron on Dissolution Evolution in Model and Commercial Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 796–822,
9.
Yagnik
S.
,
Adamson
R. B.
,
Kobylyansky
G.
,
Chen
J.-H.
,
Gilbon
D.
,
Ishimoto
S.
,
Fukuda
T.
,
Hallstadius
L.
,
Obukhov
A.
, and
Mahmood
S.
, “
Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 748–795,
10.
Coulet
A.
,
Motta
A. T.
,
Ambard
A.
, and
Comstock
R. J.
, “
Hydrogen Pickup Mechanism in Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 312–349,
11.
Zee
R. H.
,
Carpenter
G. J.
C.
,
Rogerson
A.
, and
Watters
J. F.
, “
Irradiation Growth in Deformed Zirconium
,”
Journal of Nuclear Materials
150
, no.
3
(
1987
): 319–330.
12.
Markelov
V. A.
,
Malgin
A. G.
,
Filatova
N. K.
,
Novikov
V. V.
,
Shevyakov
A. Y.
,
Gusev
A. Y.
,
Shelepov
I. A.
 et al
, “
Fabrication of E110 Alloy Fuel Rod Claddings from Electrolytic Zirconium Base with Removing Fluorine Impurity for Providing Resistance to Breakaway Oxidation in High-Temperature Steam
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 123–148,
13.
Hozer
Z.
,
Perez-Fero
E.
,
Novotny
T.
,
Nagy
I.
,
Horvath
M.
,
Pinter-Csordas
A.
,
Vimi
A.
,
Kunstar
M.
, and
Kemeny
T.
, “
Experimental Comparison of the Behavior of E110 and E110G Claddings at High Temperature
,” in
Zirconium in the Nuclear Industry: 17th International Symposium
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
): 932–951,
14.
Valizadeh
S.
,
Ledergerber
G.
,
Abolhassani
S.
,
Jadernas
D.
,
Dahlback
M.
,
Mader
E. V.
,
Zhou
G.
,
Wright
J.
, and
Hallstadius
L.
, “
Effects of Second Phase Particle Dissolution on the In-Reactor Performance of BWR Cladding
,” in
Zirconium in the Nuclear Industry: 16th International Symposium
, ed.
Limback
M.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2011
), 729–753,
15.
Doriot
S.
,
Verhaeghe
B.
,
Bechade
J.-L.
,
Menut
D.
,
Gilbon
D.
,
Marden
J.-P.
,
Cloue
J.-M.
,
Miquet
A.
, and
Legras
L.
, “
Microstructural Evaluation of M5 Alloy Irradiated in PWRs up to High Fluences—Comparison with Other Zr-Based Alloys
,” in
Zirconium in the Nuclear Industry: 17th International Symposium
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 759–799,
16.
Abolhassani
S.
,
Proff
C.
,
Veleva
L.
,
Karlsen
T. M.
,
Bennett
P.
,
Oberlander
B.
,
Espeland
M.
,
Jenssen
H.
,
Hallstadius
L.
, and
Garde
A. M.
, “
Transmission Electron Microscopy Examinations of Metal-Oxide Interface of Zirconium-Based Alloys Irradiated in Halden Reactor-IFA-638
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 614–644,
17.
Liu
J.
,
He
G.
,
Callow
A.
,
Li
K.
,
Lozano-Perez
S.
,
Wilkinson
A. J.
,
Moody
M.
 et al
, “
Ex Situ and In Situ Studies of Radiation Damage Mechanisms in Zr-Nb Alloys
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 408–434,
18.
Yucca Mountain Science and Engineering Report, Technical Information Supporting Site Recommendation Consideration, DOE/RW-0539-1 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, February
2002
).
19.
The Exploratory Studies Facility, Yucca Mountain Site Characterization Project Report DOE/YMP-0395 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
,
2000
).
20.
Why Do Scientists Think a Repository Will Work? Yucca Mountain Site Characterization Project Report DOE/YMP-0004 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
,
2000
).
21.
Overview: Yucca Mountain Project, Yucca Mountain Site Characterization Project Report DOE/YMP-0026 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, May
2000
).
22.
Studying the Movement of Rock and Earthquakes, Yucca Mountain Site Characterization Project Report DOE/YMP-0344 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, July
2000
).
23.
A Study of How Fluid Moves through Rock, Yucca Mountain Site Characterization Project Report DOE/YMP-0006, (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, June
2000
).
24.
Managing Heat in a Repository at Yucca Mountain, Yucca Mountain Site Characterization Project Report DOE/YMP-0204 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, June
2000
).
25.
Nature and Engineering Working Together for a Safe Repository, Yucca Mountain Site Characterization Project Report DOE/YMP-0203 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, June
2000
).
26.
Yucca Mountain Site Suitability Evaluation, DOE/RW-0549 (Washington, DC:
U.S. Department of Energy, Office of Civilian Radioactive Waste Management
, February
2002
).
27.
Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process, Final Report, December
2001
, https://web.archive.org/web/20170726004332/https://energy.gov/sites/prod/files/edg/media/NEA-iaeaPRTSPA12-01.pdf
28.
Chu
M. S.
Y.
, “
The US Nuclear Waste Management Programme ‘The Path forward to License Application for a Geological Repository at Yucca Mountain,’
” in
Issues and Trends in Radioactive Waste Management, Proceedings of an International Conference Held in Vienna, Austria, 9–13 December 2002
(
Vienna, Austria
:
International Atomic Energy Agency
,
2003
), 235–240.
29.
Commercial Nuclear Waste: Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned, GAO-11-229 (Washington, DC:
U.S. Government Accountability Office
,
2011
).
30.
Safety Evaluation Report Related to Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada, NUREG-1949 (Rockville, MD:
U.S. Nuclear Regulatory Commission
,
2015
).
31.
Backgrounder on Licensing Yucca Mountain
,”
U.S. Nuclear Regulatory Commission
, June
2018
, https://web.archive.org/web/20210721151556/http://nrc.gov/reading-rm/doc-collections/fact-sheets/yucca-license-review.html
32.
Commercial Nuclear Waste: Resuming Licensing of the Yucca Mountain Repository Would Require Rebuilding Capacity at DOE and NRC among Other Key Steps, GAO-17-340 (Washington, DC:
U.S. Government Accountability Office
,
2017
).
33.
Commercial Spent Nuclear Fuel: Congressional Action Needed to Break Impasse and Develop a Permanent Disposal Solution, GAO-21-603 (Washington, DC:
U.S. Government Accountability Office
,
2021
).
34.
High-Level Waste: GAO Urges Congress to Address Spent Fuel Stalemate
,” Nuclear News (
2021
): 93–95.
35.
Commercial Nuclear Waste: Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned, GAO-11-229 (Washington, DC:
U.S. Government Accountability Office
,
2011
).
36.
McPherson
D. J.
and
Hansen
M.
, “
Sn-Zr Tin-Zirconium Phase Diagram
” in
Constitution of Binary Alloys
, ed.
Hansen
M.
and
Anderko
K.
(
New York, NY
:
McGraw-Hill
,
1958
) 1219–1221.
37.
Rogers
B. A.
and
Atkins
D. F.
, “
Nb-Zr Niobium-Zirconium Phase Diagram
,” in
Constitution of Binary Alloys
, ed.
Hansen
M.
and
Anderko
K.
(
New York, NY
:
McGraw-Hill
,
1958
), 1023–1024.
38.
Garzarolli
F.
,
Steinberg
E.
, and
Weidinger
H. G.
, “
Microstructure and Corrosion Studies for Optimized PWR and BWR Zircaloy Cladding
,” in
Zirconium in the Nuclear Industry: Eighth International Symposium
, ed.
Van Swam
L. F.
P.
and
Eucken
C. M.
(
West Conshohocken, PA
:
ASTM International
,
1989
), 202–212.
39.
Kaczorowski
D.
,
Mardon
J. P.
,
Barberis
P.
,
Hoffman
P. B.
, and
Stevens
J.
, “
Impact of Iron in M5TM6
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 159–183,
40.
Foster
J. P.
,
Comstock
R. J.
,
Atwood
A.
,
Pan
G.
,
Garde
A.
,
Dahlback
M.
,
Partezana Mundroff
J.
, and
Mueller
A. J.
.
Zirconium alloy with improved corrosion/creep resistance
. U.S. Patent 10,221,475 B2, filed July 6,
2015
, and issued March 5,
2019
.
41.
Motta
A. T.
,
Gomes da Silva
M. J.
,
Yilmazbayhan
A.
,
Comstock
R. J.
,
Cai
Z.
, and
Lai
B.
, “
Microstructural Characterization of Oxides Formed on Model Zr Alloys Using Synchrotron Radiation
,” in
Zirconium in the Nuclear Industry: 15th International Symposium
, ed.
Kammenzind
B.
and
Limback
M.
(
West Conshohocken, PA
:
ASTM International
,
2009
), 486–506.
42.
Acceptance Criteria for Emergency-Core-Cooling Systems for Light-Water-Cooled Nuclear Power Reactors
, Docket RM-50-1, December 28,
1973
).
43.
U.S. NRC Preliminary Draft Regulatory Guide 1.224, “
Establishing Analytical Limits for Zirconium Alloy Cladding Material
,” DG-1263, March
2014
, http://web.archive.org/web/20220309135105/https://www.nrc.gov/docs/ML1528/ML15281A192.pdf
44.
Garde
A. M.
,
Smith
G. P.
, and
Pirek
R. C.
, “
Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4
,” ed.
Bradley
E. R.
and
Sabol
G. P.
(
West Conshohocken, PA
:
ASTM International
,
1996
), 407–430.
45.
Pilling
N.
and
Bedworth
R. E.
, “
The Oxidation of Metals at High Temperature
,”
Journal of the Institute of Metals
29
(
1923
): 529–582.
46.
Garde
A. M.
,
Smith
G. P.
, and
Pirek
R. C.
, “
In-PWR Irradiation Performance of Dilute Tin-Zirconium Advanced Alloys
,” in
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ed.
Moan
G. D.
and
Rudling
P.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 490–506.
47.
Garde
A. M.
,
Comstock
R. J.
,
Pan
G.
,
Baranwal
R.
,
Hallstadous
L.
,
Cook
T.
, and
Carrera
F.
, “
Advanced Zirconium Alloy for PWR Application
,”
Journal of ASTM International
7
, no.
9
(
2010
):
48.
Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events, Document EA-12-049 (Rockville, MD:
U.S. Nuclear Regulatory Commission
,
2012
).
49.
Diverse and Flexible Coping Strategies (FLEX) Implementation Guide, NEI 12-06 (Rev. 4) (Washington, DC:
Nuclear Energy Institute
,
2016
).
50.
Alat
E.
,
Hu
J.
,
Wolfe
D. E.
, and
Motta
A. T.
, “
Corrosion and Ion Irradiation Behavior of Ceramic-Coated Nuclear Fuel Cladding
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 149–171,
51.
Kim
H.-G.
,
Kim
I.-H.
,
Jung
Y.-I.
,
Park
D.-J.
,
Park
J.-H.
,
Lee
Y.-H.
, and
Choi
B.-K.
, “
Development of Cr-Al Coating on Zircaloy-4 for Enhanced Accident Tolerant Fuel
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 172–188,
52.
Chaari
N.
,
Bischoff
J.
,
Buchanan
K.
,
Delafoy
C.
,
Barberis
P.
,
Augereau
J.
, and
Nimishakavi
K.
, “
The Behavior of Cr-Coated Zirconium Alloy Cladding Tubes at High Temperatures
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 189–210,
53.
Walters
J. L.
,
Romero
J. E.
,
Mueller
A. J.
,
Maier
B. R.
,
Partezana
J. M.
,
Lyons
J. L.
,
Byers
W. A.
 et al
, “
Effects of Cold Spray Chromium Coatings on the Properties of Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: 19th International Symposium
, ed.
Motta
A. T.
and
Yagnik
S. K.
(
West Conshohocken, PA
:
ASTM International
,
2021
), 211–231,
54.
Malone
J.
,
Totemeier
A.
,
Shapiro
N.
, and
Vaidyanathan
S.
, “
Lightbridge Corporation’s Advanced Metallic Fuel for Light Water Reactors
,”
Nuclear Technology
180
(
2012
): 437–442.
55.
Dry Storage and Transportation of High Burnup Spent Nuclear Fuel, NUREG-2224 (Rockville, MD:
U.S. Nuclear Regulatory Commission
,
2020
).
56.
Thomas
D. E.
, “
Corrosion in Water and Steam
,” in
Metallurgy of Zirconium
, ed.
Lustman
B.
and
Kerze
F.
(
New York, NY
:
McGraw Hill
,
1955
), 608–640.
57.
Garde
A. M.
,
Pan
G.
,
Mueller
A. J.
, and
Hallstadius
L.
, “
Oxide Surface Peeling of Advanced Zirconium Alloy Cladding after High Burnup Irradiation in Pressurized Water Reactors
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 673–692,
58.
Pressurized-Water Reactor Control Rod Ejection and Boiling-Water Reactor Control Rod Drop Accidents
, Regulatory Guide RG 1.236 (
Rockville, MD
:
U.S. Nuclear Regulatory Commission
,
2020
).
59.
Garde
A. M.
, “
Enhancement of Aqueous Corrosion of Zircaloy-4 due to Hydride Precipitation at the Metal-Oxide Interface
,” in
Zirconium in the Nuclear Industry: Ninth International Symposium
, ed.
Eucken
C. M.
and
Garde
A. M.
(
West Conshohocken, PA
:
ASTM International
,
1991
), 566–594.
60.
Jublot
M.
,
Zumpicchiat
G.
,
Tupin
M.
,
Pascal
S.
,
Berdin
C.
,
Biser
C.
, and
Blat-Yrieix
M.
, “
Influence of Hydride Precipitation on the Corrosion Kinetics of Zircaloy-4: Effect of the Nanostructure and Grain Boundary Properties of the Zirconium Oxide Layer on Oxygen Diffusion Flux
,” in
Zirconium in the Nuclear Industry: 18th International Symposium
, ed.
Comstock
R. J.
and
Motta
A. T.
(
West Conshohocken, PA
:
ASTM International
,
2018
), 350–384,
61.
Garde
A. M.
,
Pati
S. R.
,
Krammen
M. A.
,
Smith
G. P.
, and
Endter
R. K.
, “
Corrosion Behavior of Zircaloy-4 Cladding with Varying Tin Content in High-Temperature Pressurized Water Reactors
,” in
Zirconium in the Nuclear Industry: Tenth International Symposium
, ed.
Garde
A. M.
and
Bradley
E. R.
(
West Conshohocken, PA
:
ASTM International
,
1994
), 760–778.
62.
Pan
G.
,
Garde
A. M.
, and
Atwood
A. R.
, “
Performance and Property Evaluation of High-Burnup Optimized ZIRLOTM Cladding
,” in
Zirconium in the Nuclear Industry: 17th Volume
, ed.
Comstock
R. J.
and
Barberis
P.
(
West Conshohocken, PA
:
ASTM International
,
2015
), 607–627,
63.
Pan
G.
,
Mitchell
D.
,
Atwood
A.
,
Iyer
J.
,
Limback
M.
,
Fridemo
L.
,
Cai
L.
,
Munoz-Reja
C.
, and
Munoz
A.
, “
Oxide Surface Peeling (OSP) of Advanced Zirconium Cladding Irradiated in PWRs
” (paper presentation, TopFuel 2019,
Seattle, WA
, September 22–26,
2019
.)
64.
Onimus
F.
,
Monnet
I.
,
Bechade
J. L.
,
Prioul
C.
, and
Pilvin
P.
, “
A Statistical TEM Investigation of Dislocation Channeling Mechanism in Neutron Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
328
, nos.
2–3
(
2004
): 165–179.
65.
Onimus
F.
,
Bechade
J.
,
Prioul
C.
,
Pilvin
P.
,
Monnet
I.
,
Doriot
S.
,
Verhaeghe
B.
 et al
, “
Plastic Deformation of Irradiated Zirconium Alloys: TEM Investigations and Micro-Mechanical Modeling
,” in
Zirconium in the Nuclear Industry; Fourteenth International Symposium
, ed.
Rudling
P.
and
Kammenzind
B.
(
West Conshohocken, PA
:
ASTM International
,
2005
), 53–78,
66.
Onimus
F.
,
Bechade
J. L.
, and
Gilbon
D.
, “
Experimental Analysis of Slip Systems Activation in Neutron-Irradiated Zirconium Alloys and Comparison with Polycrystalline Model Simulations
,”
Metallurgical and Materials Transactions A
44
, no.
1
(
2013
): 45–60.
67.
Petry
K.
, “
Panel Discussion at ANS 2021 Winter Meeting, November 30 – December 3, 2021, Washington, DC
,” Nuclear News (
2022
): 31–32.
68.
Managing Aging Processes in Storage (MAPS) Report, NUREG-2214 (Rockville, MD:
U.S. Nuclear Regulatory Commission
,
2019
).
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal