Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Graphite Testing for Nuclear Applications: The Validity and Extension of Test Methods for Material Exposed to Operating Reactor EnvironmentsAvailable to Purchase
Editor
Athanasia Tzelepi
Athanasia Tzelepi
Symposium Co-Chair and STP Editor
1
National Nuclear Laboratory
,
Sellafield,
GB
Search for other works by this author on:
Martin Metcalfe
Martin Metcalfe
Symposium Co-Chair and STP Editor
2
Nuclear Graphite Research Group, Nuclear Engineering Department of MACE, University of Manchester
,
Manchester,
GB
Search for other works by this author on:
ISBN:
978-0-8031-7725-3
No. of Pages:
312
Publisher:
ASTM International
Publication date:
2022

As one of the preferred designs in Generation IV reactors, the molten salt reactor (MSR) is gaining a lot of interest around the world. The MSR uses molten salt as a coolant to transfer heat out from its reactor core. Components of the MSR would be inevitably damaged by both irradiation and molten salt erosion. Nuclear graphite, as a moderator and reflector for the MSR, may receive more irradiation dose than other nuclear materials inside the reactor core. Graphite is also a porous material, and impregnation of molten salts may cause damage to its internal structure. Moreover, the effects of molten salt impregnation are more uncertain due to the change of material properties by irradiation. Here, potential problems in using graphite in the MSR are reviewed. Experimental methods for nuclear graphite exposed to a molten salt environment are also discussed.

1.
Ergen
W. K.
,
Callihan
A. D.
,
Mills
C. B.
, and
Scott
D.
, “
The Aircraft Reactor Experiment—Physics
,”
Nuclear Science and Engineering
2
, no.
6
(
1957
): 826–840,
2.
Ingersoll
D. T.
, “
Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)
,” Technical Report No. ORNL/TM-2004/104 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
2004
),
3.
Robertson
R. C.
, “
Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor
,” Technical Report No. ORNL-4541 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
1971
),
4.
Abram
T.
and
Ion
S.
, “
Generation-IV Nuclear Power: A Review of the State of the Science
,”
Energy Policy
36
, no.
12
(
2008
): 4323–4330,
5.
Serp
J.
,
Allibert
M.
,
Beneš
O.
,
Delpech
S.
,
Feynberg
O.
,
Ghetta
V.
,
Heuer
D.
, et al
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Progress in Nuclear Energy
77
(
2014
): 308–319,
6.
Lee
J. J.
,
Arregui-Mena
J. D.
,
Contescu
C. I.
,
Burchell
T. D.
,
Katoh
Y.
, and
Loyalka
S. K.
, “
Protection of Graphite from Salt and Gas Permeation in Molten Salt Reactors
,”
Journal of Nuclear Materials
534
(
2020
): 152119,
7.
Standard Guide for Impregnation of Graphite with Molten Salt
, ASTM D8091-21 (
West Conshohocken, PA
:
ASTM International
, approved July 1,
2021
),
8.
Standard Test Method for Tensile Strength Estimate by Disc Compression of Manufactured Graphite
, ASTM D8289-20 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2020
),
9.
Standard Guide for High Temperature Strength Measurements of Graphite Impregnated with Molten Salt
, ASTM D8377-21 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2021
),
10.
Ryazanov
A. I.
,
Koval’chuk
M. V.
,
Mukhamedzhanov
E. Kh.
,
Peregudov
V. N.
,
Latushkin
S. T.
,
Morkovin
A. N.
,
Borisov
M. M.
, and
Unezhev
V. N.
, “
Radiation Defect Clustering in Graphite Studied by Synchrotron Radiation Scattering
,”
Journal of Experimental and Theoretical Physics
107
, no.
1
(
2008
): 102,
11.
Ryazanov
A. I.
and
Semenov
E. V.
, “
Analysis of Formation of Primary Radiation-Induced Point Defects in Graphite under Action of Secondary Neutrons and π-Mesons Generated in Various Channels of Nuclear Reactions upon Graphite Irradiation by 450-GeV Protons
,”
Journal of Experimental and Theoretical Physics
111
(
2010
): 392–396,
12.
Virgilev
Y. S.
,
Kotosonov
A. S.
, and
Kupriyanov
S. A.
, “
Radiation Defects in Graphite
,”
Inorganic Materials
23
, no.
6
(
1987
): 1035–1037.
13.
Telling
R. H.
and
Heggie
M. I.
, “
Radiation Defects in Graphite
,”
Philosophical Magazine
87
, no.
31
(
2007
): 4797–4846,
14.
Trevethan
T.
and
Heggie
M. I.
, “
Molecular Dynamics Simulations of Irradiation Defects in Graphite: Single Crystal Mechanical and Thermal Properties
,”
Computational Materials Science
113
(
2016
): 60–65,
15.
Shurshakova
T. N.
,
Virgilev
Y. S.
, and
Kalyagina
I. P.
, “
Radiation Defects in Graphite
,”
Soviet Atomic Energy
40
, no.
5
(
1976
): 481–492,
16.
Bonilla
L. L.
,
Carpio
A.
,
Gong
C.
, and
Warner
J. H.
, “
Measuring Strain and Rotation Fields at the Dislocation Core in Graphene
,”
Physical Review B
92
, no.
15
(
2015
): 155417,
17.
Warner
J. H.
,
Fan
Y.
,
Robertson
A. W.
,
He
K.
,
Yoon
E.
, and
Lee
G. D.
, “
Rippling Graphene at the Nanoscale through Dislocation Addition
,”
Nano Letters
13
, no.
10
(
2013
): 4937–4944,
18.
Robertson
A. W.
and
Warner
J. H.
, “
Atomic Resolution Imaging of Graphene by Transmission Electron Microscopy
,”
Nanoscale
5
, no.
5
(
2013
): 4079–4093,
19.
Latham
C. D.
,
Heggie
M. I.
,
Alatalo
M.
,
Oberg
S.
, and
Briddon
P. R.
, “
The Contribution Made by Lattice Vacancies to the Wigner Effect in Radiation-Damaged Graphite
,”
Journal of Physics: Condensed Matter
25
, no.
13
(
2013
): 135403,
20.
Thrower
P. A.
and
Mayer
R. M.
, “
Point Defects and Self-Diffusion in Graphite
,”
Physica Status Solidi A
47
, no.
1
(
1978
): 11–37,
21.
Kelly
B. T.
and
Burchell
T. D.
, “
The Analysis of Irradiation Creep Experiments on Nuclear-Reactor Graphite
,”
Carbon
32
, no.
4
(
1994
): 119–125,
22.
Farbos
B.
,
Freeman
H.
,
Hardcastle
T.
,
Da Costa
J.-P.
,
Brydson
R.
,
Scott
A. J.
,
Weisbecker
P.
,
Germain
C.
,
Vignoles
G. L.
, and
Leyssale
J.-M.
, “
A Time-Dependent Atomistic Reconstruction of Severe Irradiation Damage and Associated Property Changes in Nuclear Graphite
,”
Carbon
120
(
2017
): 111–120,
23.
Ishiyama
S.
,
Burchell
T. D.
,
Strizak
J. P.
, and
Eto
M.
, “
The Effect of High Fluence Neutron Irradiation on the Properties of a Fine-Grained Isotropic Nuclear Graphite
,”
Journal of Nuclear Materials
230
, no.
1
(
1996
): 1–7,
24.
Brocklehurst
J. E.
and
Kelly
B. T.
, “
Analysis of the Dimensional Changes and Structural Changes in Polycrystalline Graphite under Fast Neutron Irradiation
,”
Carbon
31
, no.
1
(
1993
): 155–178,
25.
Neighbour
G. B.
, “
Modelling of Dimensional Changes in Irradiated Nuclear Graphites
,”
Journal of Physics D: Applied Physics
33
, no.
22
(
2000
): 2966–2972,
26.
Wen
K.
,
Marrow
J.
, and
Marsden
B.
, “
Microcracks in Nuclear Graphite and Highly Oriented Pyrolytic Graphite (HOPG)
,”
Journal of Nuclear Materials
381
, nos.
1–2
(
2008
): 199–203,
27.
Tsang
D. K.
L.
and
Marsden
B. J.
, “
Effects of Dimensional Change Strain in Nuclear Graphite Component Stress Analysis
,”
Nuclear Engineering and Design
237
, no.
9
(
2007
): 897–904,
28.
Burchell
T. D.
and
Snead
L. L.
, “
The Effect of Neutron Irradiation Damage on the Properties of Grade NBG-10 Graphite
,”
Journal of Nuclear Materials
371
, no.
1–3
(
2007
): 18–27,
29.
He
Z.
,
Gao
L.
,
Qi
W.
,
Zhang
B.
,
Wang
X.
,
Song
J.
,
He
X.
, et al
, “
Molten FLiNaK Salt Infiltration into Degassed Nuclear Graphite under Inert Gas Pressure
,”
Carbon
84
(
2015
): 511–518,
30.
Kasten
P. R.
,
Bettis
E. S.
,
Cook
W. H.
,
Eatherly
W. P.
,
Holmes
D. K.
,
Kedl
R. J.
,
Kennedy
C. R.
, et al
, “
Graphite Behavior and Its Effects on MSBR Performance
,”
Nuclear Engineering and Design
9
, no.
2
(
1969
): 157–195,
31.
Baker
D. E.
, “
Graphite as a Neutron Moderator and Reflector Material
,”
Nuclear Engineering and Design
14
, no.
3
(
1970
): 413–444,
32.
Briggs
R. B.
, “
Molten-Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964
,” Technical Report No. ORNL-3708 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
1964
),
33.
MacPherson
H. G.
, “
Molten-Salt Reactor Program Quarterly Progress Report for Period Ending July 31, 1960
,” Technical Report No. ORNL-3014 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
1960
),
34.
Tang
H.
,
Qi
W.
,
He
Z.
,
Xia
H.
,
Huang
Q.
,
Zhang
C.
,
Wang
X.
,
Song
J.
,
Huai
P.
, and
Zhou
X.
, “
Infiltration of Graphite by Molten 2LiF–BeF2 Salt
,”
Journal of Materials Science
52
, no.
19
(
2017
): 11346–11359,
35.
Zhang
W.
,
Zhang
B.
,
Song
J.
,
Qi
W.
,
He
X.
,
Liu
Z.
,
Lian
P.
, et al
, “
Microstructure and Molten Salt Impregnation Characteristics of a Micro-Fine Grain Graphite for Use in Molten Salt Reactors
,”
New Carbon Materials
31
, no.
6
(
2016
): 585–593,
36.
Xu
H.-X.
,
Lin
J.
,
Zhong
Y.-J.
,
Zhu
Z.-Y.
,
Chen
Y.
,
Liu
J.-D.
, and
Ye
B.-J.
, “
Characterization of Molten 2LiF–BeF2 Salt Impregnated into Graphite Matrix of Fuel Elements for Thorium Molten Salt Reactor
,”
Nuclear Science and Techniques
30
, no.
5
(
2019
): 74,
37.
Gallego
N.
,
Contescu
C.
, and
Keiser
J.
, “
Progress Report on Graphite-Salt Intrusion Studies
,” Technical Report No. ORNL/TM-2020/1621 (Oak Ridge, TN:
Oak Ridge National Laboratory
,
2020
),
38.
Chartier
A.
,
Van Brutzel
L.
,
Pannier
B.
, and
Baranek
P.
, “
Atomic Scale Mechanisms for the Amorphisation of Irradiated Graphite
,”
Carbon
91
(
2015
): 395–407,
39.
Buckingham
A. D.
,
Fowler
P. W.
, and
Hutson
J. M.
, “
Theoretical Studies of van der Waals Molecules and Intermolecular Forces
,”
Chemical Reviews
88
(
1988
): 963–988,
40.
Ziambaras
E.
,
Kleis
J.
,
Schroder
E.
, and
Hyldgaard
P.
, “
Potassium Intercalation in Graphite: A van der Waals Density-Functional Study
,”
Physical Review B
76
, no.
15
(
2007
), 155425,
41.
Girifalco
L. A.
,
Hodak
M.
, and
Lee
R. S.
, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Physical Review B
62
, no.
19
(
2000
): 13104–13110,
42.
Pascal
T. A.
,
Goddard
W. A.
, and
Jung
Y.
, “
Entropy and the Driving Force for the Filling of Carbon Nanotubes with Water
,”
Proceedings of the National Academy of Sciences USA
108
, no.
29
(
2011
): 11794–11798,
43.
Kganyago
K. R.
and
Ngoepe
P. E.
, “
Structural and Electronic Properties of Lithium Intercalated Graphite LiC6
,”
Physical Review B
68
, no.
20
(
2003
): 205111,
44.
Qi
W.
,
He
Z.
,
Tang
H.
,
Zhang
B.
,
Zhang
C.
,
Gao
L.
,
Song
J.
,. et al
, “
Effects of FLiNaK Infiltration on Thermal Expansion Behavior of Graphite
,”
Journal of Materials Science
52
, no.
8
(
2017
): 4621–4634,
45.
He
Z.
,
Tang
H.
,
Zhang
C.
,
Gao
Y.
,
Xia
H.
, and
Zhou
X.
, “
The Compatibility of Nuclear Graphite with Molten Salt in the Molten Salt Reactor
,” in
Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management
(
New York
:
American Society of Mechanical Engineers
), V002T03A026,
46.
He
Z.
,
Gao
L.
,
Wang
X.
,
Zhang
B.
,
Qi
W.
,
Song
J.
,
He
X.
, et al
, “
Improvement of Stacking Order in Graphite by Molten Fluoride Salt Infiltration
,”
Carbon
72
(
2014
): 304–311,
47.
Etter
T.
,
Kuebler
J.
,
Frey
T.
,
Schulz
P.
,
Löffler
J. F.
, and
Uggowitzer
P. J.
, “
Strength and Fracture Toughness of Interpenetrating Graphite/Aluminium Composites Produced by the Indirect Squeeze Casting Process
,”
Materials Science and Engineering: A
386
, no.
1–2
(
2004
): 61–67,
48.
Calderon
N. R.
,
Voytovych
R.
,
Narciso
J.
, and
Eustathopoulos
N.
, “
Pressureless Infiltration versus Wetting in AlSi/Graphite System
,”
Journal of Materials Science
45
, no.
16
(
2010
): 4345–4350,
49.
Song
J.
,
Guo
Q.
,
Gao
X.
,
Shi
J.
, and
Liu
L.
, “
Microstructure and Thermophysical Properties of Graphite Foam/Glass Composites
,”
Carbon
49
, no.
4
(
2011
): 1479–1483,
50.
Zhang
C.
,
He
Z.
,
Gao
Y.
,
Tang
H.
,
Qi
W.
,
Song
J.
, and
Zhou
X.
, “
The Effect of Molten FLiNaK Salt Infiltration on the Strength of Graphite
,”
Journal of Nuclear Materials
512
(
2018
): 37–45,
51.
Sure
J.
,
Shankar
A. R.
,
Ramya
S.
, and
Mudali
U. K.
, “
Molten Salt Corrosion of High Density Graphite and Partially Stabilized Zirconia Coated High Density Graphite in Molten LiCl-KCl Salt
,”
Ceramics International
38
, no.
4
(
2012
): 2803–2812,
52.
Bernardet
V.
,
Gomes
S.
,
Delpeux
S.
,
Dubois
M.
,
Guérin
K.
,
Avignant
D.
,
Renaudin
G.
, and
Duclaux
L.
, “
Protection of Nuclear Graphite toward Fluoride Molten Salt by Glassy Carbon Deposit
,”
Journal of Nuclear Materials
384
, no.
3
(
2009
): 292–302,
53.
He
X.
,
Song
J.
,
Tan
J.
,
Zhang
B.
,
Xia
H.
,
He
Z.
,
Zhou
X.
, et al
, “
SiC Coating: An Alternative for the Protection of Nuclear Graphite from Liquid Fluoride Salt
,”
Journal of Nuclear Materials
448
, nos.
1–3
(
2014
): 1–3,
54.
He
X.
,
Song
J.
,
Xu
L.
,
Tan
J.
,
Xia
H.
,
Zhang
B.
,
He
Z.
, et al
, “
Protection of Nuclear Graphite toward Liquid Fluoride Salt by Isotropic Pyrolytic Carbon Coating
,”
Journal of Nuclear Materials
442
, nos.
1–3
(
2013
): 306–308,
55.
He
Z.
,
Lian
P.
,
Song
Y.
,
Liu
Z.
,
Song
J.
,
Zhang
J.
,
Ren
X.
, et al
, “
Protecting Nuclear Graphite from Liquid Fluoride Salt and Oxidation by SiC Coating Derived from Polycarbosilane
,”
Journal of the European Ceramic Society
38
, no.
2
(
2018
): 453–462,
56.
He
Z.
,
Song
J. H.
,
Lian
P. F.
,
Zhang
D. Q.
, and
Liu
Z. J.
, “
Excluding Molten Fluoride Salt from Nuclear Graphite by SiC/Glassy Carbon Composite Coating
,”
Nuclear Engineering Technology
51
, no.
5
(
2019
): 1390–1397,
57.
Feng
S.
,
Xu
L.
,
Li
L.
,
Bai
S.
,
Yang
X.
, and
Zhou
X.
, “
Sealing Nuclear Graphite with Pyrolytic Carbon
,”
Journal of Nuclear Materials
441
, nos.
1–3
(
2013
): 449–454,
58.
Virgil’ev
Y. S.
and
Lebedev
I. G.
, “
Effect of Neutron Irradiation on Properties of Glassy Carbon
,”
Inorganic Materials
38
no.
7
(
2002
): 668–673,
59.
Zhao
H.
,
He
Z.
,
Liu
Z.
,
Song
J.
,
Tsang
D. K.
L.
, and
Zhang
H.
, “
Self-Sintered Nanopore-Isotropic Graphite Derived from Green Pitch Coke for Application in Molten Salt Nuclear Reactor
,”
Annals of Nuclear Energy
131
(
2019
): 412–416,
60.
He
Z.
,
Lian
P.
,
Song
Y.
,
Liu
Z.
,
Song
J.
,
Zhang
J.
,
Feng
J.
,
Yan
X.
, and
Guo
Q.
, “
Improving Molten Fluoride Salt and Xe135 Barrier Property of Nuclear Graphite by Phenolic Resin Impregnation Process
,”
Journal of Nuclear Materials
499
(
2018
): 79–87,
61.
He
Z.
,
Lian
P.
,
Song
J.
,
Zhang
D.
,
Liu
Z.
, and
Guo
Q.
, “
Microstructure and Properties of Fine-Grained Isotropic Graphite Based on Mixed Fillers for Application in Molten Salt Breeder Reactor
,”
Journal of Nuclear Materials
511
(
2018
): 318–327,
62.
He
Z.
,
Liu
Z. J.
,
Song
J. L.
,
Lian
P. F.
, and
Guo
Q. G.
, “
Fine-Grained Graphite with Super Molten Salt Barrier Property Produced from Filler of Natural Graphite Flake by a Liquid-Phase Mixing Process
,”
Carbon
145
(
2019
): 367–377,
63.
Song
J. L.
,
Zhao
Y.
,
Zhang
J.
,
He
X.
,
Zhang
B.
,
Lian
P.
,
Liu
Z.
, et al
, “
Preparation of Binderless Nanopore-Isotropic Graphite for Inhibiting the Liquid Fluoride Salt and Xe135 Penetration for Molten Salt Nuclear Reactor
,”
Carbon
79
(
2014
): 36–45,
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal