Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Progress in Additive Manufacturing 2020Available to Purchase
By
Nima Shamsaei
Nima Shamsaei
Symposium Chair and STP Editor
1
Auburn University
,
Auburn, AL,
US
Search for other works by this author on:
Mohsen Seifi
Mohsen Seifi
Symposium Chair and STP Editor
2
ASTM International
,
Washington, DC,
US
Search for other works by this author on:
ISBN:
978-0-8031-7721-5
No. of Pages:
432
Publisher:
ASTM International
Publication date:
2022

This technical paper outlines a digital light processing (DLP) technique that can produce geometrically complex, highly conductive, pure copper parts. By incorporating a high-purity, high-sphericity copper powder into the DLP feedstock and optimizing the DLP printing and sintering process parameters, parts made with this technique achieve electrical conductivities greater than 92% (International Annealed Copper Standard) and negative and positive feature sizes down to 100 µm. As demonstrated by computational fluid dynamics modeling, the resulting copper cold plates exhibit superior thermal performance with an additional 4°C of cooling compared to traditionally manufactured cold plates.

1.
Sharma
R. K.
,
Bash
C. E.
,
Patel
C. D.
,
Friedrich
R. J.
, and
Chase
J. S.
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
IEEE Internet Computing
9
, no.
1
(
2005
): 42–49,
2.
Naveh
A.
,
Rotem
E.
,
Mendelson
A.
,
Gochman
S.
,
Chabukswar
R.
,
Krishnan
K.
, and
Kumar
A.
, “
Power and Thermal Management in the Intel Core Duo Processor
,”
Intel Technology Journal
10
, no.
2
(
2006
): 109–122,
3.
Wang
Q.
,
Jiang
B.
,
Li
B.
, and
Yan
Y.
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renewable and Sustainable Energy Reviews
64
(
2016
): 106–128,
4.
O’Keefe
M.
and
Bennion
K.
, “
Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options
,” in
Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2008
), 116–123,
5.
Nellis
G.
and
Klein
S.
,
Heat Transfer
(
Cambridge, UK
:
Cambridge University Press
,
2009
).
6.
Petrick
I. J.
and
Simpson
T. W.
, “
3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition
,”
Research-Technology Management
56
, no.
6
(
2013
): 12–16,
7.
Norfolk
M.
and
Johnson
H.
, “
Solid-State Additive Manufacturing for Heat Exchangers
,”
JOM
67
, no.
3
(
2015
): 655–659,
8.
Ford
S.
and
Despeisse
M.
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
Journal of Cleaner Production
137
(
2016
): 1573–1587,
9.
Jafari
D.
and
Wits
W. W.
, “
The Utilization of Selective Laser Melting Technology on Heat Transfer Devices for Thermal Energy Conversion Applications: A Review
,”
Renewable and Sustainable Energy Reviews
91
(August
2018
): 420–442,
10.
Davis
J. R.
, ed.,
Copper and Copper Alloys
(
Materials Park, OH
:
ASM International
,
2001
).
11.
Wagenblast
P.
,
Myrell
A.
,
Thielmann
M.
,
Scherbaum
T.
, and
Coupek
D.
,
White Paper: TruPrint 1000 Green Edition
(
Ditzingen, Germany
:
Trumpf
,
2020
).
13.
Bai
Y.
and
Williams
C. B.
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyping Journal
21
, no.
2
(
2015
): 177–185,
14.
Colopi
M.
,
Caprio
L.
,
Demir
A. G.
, and
Previtali
B.
, “
Selective Laser Melting of Pure Cu with a 1 kW Single Mode Fiber Laser
,”
Procedia CIRP
74
(
2018
): 59–63,
15.
Jadhav
S. D.
,
Dadbakhsh
S.
,
Goossens
L.
,
Kruth
J-P
,
Van Humbeeck
J.
, and
Vanmeensel
K.
, “
Influence of Selective Laser Melting Process Parameters on Texture Evolution in Pure Copper
,”
Journal of Materials Processing Technology
270
(
2019
): 47–58,
16.
Dai
D.
and
Gu
D.
, “
Thermal Behavior and Densification Mechanism during Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments
,”
Materials and Design
55
(
2014
): 482–491,
18.
Mu
Q.
,
Wang
L.
,
Dunn
C.K.
,
Kuang
X.
,
Duan
F.
,
Zhang
Z.
,
Qi
H. J.
, and
Wang
T.
, “
Digital Light Processing 3D Printing of Conductive Complex Structures
,”
Additive Manufacturing
18
(
2017
): 74–83,
19.
Holo PureForm Additive Manufacturing
,”
Holo, Inc.
,
2020
, http://web.archive.org/web/20201221235322/https://holoam.com/
20.
Dimitri
C.
,
Mohamed
S.
,
Thierry
B.
, and
Jean-Claude
G.
, “
Influence of Particle-Size Distribution and Temperature on the Rheological Properties of Highly Concentrated Inconel Feedstock Alloy 718
,”
Powder Technology
322
(December
2017
): 273–289,
21.
Griffith
M. L.
and
Halloran
J. W.
, “
Scattering of Ultraviolet Radiation in Turbid Suspensions
,”
Journal of Applied Physics
81
, no.
6
(
1997
): 2538–2546,
22.
De Jesús
F.
,
Bolarín-Miró
A.
,
Molera
P.
,
Mendoza
J.
, and
Ocampo
M.
, “
Relationship between Particle Size and Manufacturing Processing and Sintered Characteristics of Iron Powders
,”
Revista Latinoamericana de Metalurgica y Materiales
23
, no.
1
(
2003
): 35–40.
23.
Wieder
H.
and
Czanderna
A. W.
, “
Optical Properties of Copper Oxide Films
,”
Journal of Applied Physics
37
, no.
1
(
1966
): 184–187,
24.
Grohowski
J. A.
and
Strauss
J. T.
, “
Understanding the Effects of Atmosphere Type on Thermal Debinding Behavior
,”
Industrial Heating
67
, (
2000
): 61–64.
25.
Chapman
D.
,
High Conductivity Copper for Electrical Engineering
, pub. no. 122 (
Hemel Hempstead, UK
:
Copper Development Association
,
2016
).
26.
Copper as Electrical Conductive Material with Above-Standard Performance Properties
,”
2012
, https://web.archive.org/web/20200128175422/http://www.conductivity-app.org/single-article/cu-overview
27.
The Copper Advantage: A Guide to Working with Copper and Copper Alloys
,”
Copper Development Association, Inc.
,
2017
, http://web.archive.org/web/20210211084738if_/https://www.copper.org/publications/pub_list/pdf/a1360.pdf
28.
Desktop Metal Dimensional Accuracy & Surface Finish
,”
Computer Aided Technology
,
2019
, https://web.archive.org/web/20210513211211/https://www.cati.com/blog/2019/05/desktop-metal-dimensional-accuracy-surface-finish
29.
30.
Incropera
F. P.
,
Fundamentals of Heat and Mass Transfer
, 6th ed. (
Hoboken, NJ
:
Wiley
,
2007
).
31.
German
R. M.
and
Bose
A.
,
Injection Molding of Metals and Ceramics
(
Princeton, NJ
:
Metal Powder Industries Federation
,
1997
).
32.
Briggs
J. L.
,
Literature Survey of Corrosion Inhibitors for Recirculating Cooling Water Corrosion Inhibition
(
Denver, CO
:
Dow Chemical Co.
,
1972
).
33.
Peng
Z.
and
Ogle
K.
, “
The Corrosion of Copper and Copper Alloys
,” in
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry
, ed.
Wandelt
K.
(
Amsterdam
:
Elsevier
,
2018
), 478–489,
34.
Hunter
L. W.
,
Brackett
D.
,
Brierley
N.
,
Yang
J.
, and
Attallah
M. M.
, “
Assessment of Trapped Powder Removal and Inspection Strategies for Powder Bed Fusion Techniques
,”
The International Journal of Advanced Manufacturing Technology
106
, no.
9
(
2020
): 4521–4532,
35.
Omar
M. A.
,
Ibrahim
R.
,
Sidik
M. I.
,
Mustapha
M.
, and
Mohamad
M.
, “
Rapid Debinding of 316L Stainless Steel Injection Moulded Component
,”
Journal of Materials Processing Technology
140
, nos.
1–3
(
2003
): 397–400,
36.
Ani
S. M.
,
Muchtar
A.
,
Muhamad
N.
, and
Ghani
J. A.
, “
Binder Removal via a Two-Stage Debinding Process for Ceramic Injection Molding Parts
,”
Ceramics International
40
, no.
2
(
2014
): 2819–2824,
37.
Strondl
A.
,
Lyckfeldt
O.
,
Brodin
H.
, and
Ackelid
U.
, “
Characterization and Control of Powder Properties for Additive Manufacturing
,”
JOM
67
, no.
3
(
2015
): 549–554,
38.
Malvern Instruments Ltd.
,
Morphologi G3: User Manual
(
Worchestershire, UK
:
Malvern Instruments
,
2008
).
39.
Zuhailawati
H.
and
Jamaludin
S. B.
, “
Studies on Mechanical Alloying of Copper-Tungsten Carbide Composite for Spot Welding Electrode
,”
Journal of Materials Engineering and Performance
18
, no.
9
(
2009
): 1258,
40.
Spierings
A. B.
,
Schneider
M.
, and
Eggenberger
R.
, “
Comparison of Density Measurement Techniques for Additive Manufactured Metallic Parts
,”
Rapid Prototyping Journal
17
, no.
5
(
2011
): 380–386,
41.
Standard Test Method for Thermal Diffusivity by the Flash Method
, ASTM E1461-13 (
West Conshohocken, PA
:
ASTM International
, approved September 1,
2013
),
42.
Bird
R. B.
,
Stewart
W. E.
, and
Lightfoot
E. N.
,
Transport Phenomena
, 2nd ed. (
New York
:
Wiley
,
2002
).
43.
Standard Practice for Operating Salt Spray (Fog) Apparatus
, ASTM B117-19, (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2019
),
44.
Condon
E. U.
and
Odishaw
H.
, eds.,
Handbook of Physics
(
New York
:
McGraw-Hill
,
1967
).
This content is only available via PDF.
You do not currently have access to this chapter.

or Create an Account

Close Modal
Close Modal