Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 19th International Symposium
By
Arthur T. Motta
Arthur T. Motta
Symposium Chair and STP Editor
1
Penn State University
,
University Park, PA,
US
Search for other works by this author on:
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chair and STP Editor
2
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7690-4
No. of Pages:
968
Publisher:
ASTM International
Publication date:
2021

In the current study, transmission synchrotron X-ray diffraction, scanning/transmission electron microscopy, and electron energy loss spectroscopy were utilized to characterize the crystal structure and strain state evolution of zirconium (Zr) hydride precipitates in hot rolled Zircaloy-2 containing ~ 200 wt-ppm hydrogen. Hydride precipitates were formed in two different cooling regimes: furnace cooled (FC) and water quenched (WQ). Following the cooling procedure, samples were aged at 200°C for 15 days to evaluate the stability of the hydride phases with time. Considerably different behaviors were observed between FC and WQ conditions. In the FC condition, hydride platelets formed with a face centered cubic structure with a contracted unit cell compared to that of the standard strain-free δ hydride. After aging for 15 days at 200°C, residual strains were partially relieved and no transformation to a new hydride phase was observed. In the WQ condition, synchrotron X-ray diffraction showed there was a coexistence of three hydride populations: γ hydride with a minute volume fraction, a slightly strained δ hydride prevalently observed in Zr grains with basal poles aligned close to the normal direction, and a third δ' hydride population that was a severely strained δ hydride with an apparent tetragonality of a = 4.709 Å and c = 4.783 Å. This severely strained phase was prevalently observed in Zr grains with basal poles aligned close to rolling/transverse directions. Nano-beam electron diffraction analysis revealed that, unlike γ hydride, δ` is not an ordered phase. Aging at 200°C for 15 days resulted in the complete disappearance of the γ phase and commencement of a gradual relaxation of δ` to δ.

1.
Cheadle
B. A.
,
Coleman
C. E.
, and
Licht
H.
, “
CANDU-PHW Pressure Tubes: Their Manufacture, Inspection, and Properties
,”
Nuclear Technology
57
, no.
3
(
1982
): 413–425.
2.
Garde
A.
, “
Effects of Irradiation and Hydriding on the Mechanical Properties of Zircaloy-4 at High Fluence
,” in
Zirconium in the Nuclear Industry: Eighth International Symposium
, ed.
Eucken
C.
and
Van Swam
L. S.
(
West Conshohocken, PA
:
ASTM International
,
2008
), 548–569,
3.
Bai
J. B.
,
Prioul
C.
, and
François
D.
, “
Hydride Embrittlement in Zircaloy-4 Plate: Part I. Influence of Microstructure on the Hydride Embrittlement in Zircaloy-4 at 20°C and 350°C
,”
Metallurgical and Materials Transactions A
25
, no.
6
(
1994
): 1185–1197.
4.
Kearns
J. J.
, “
Terminal Solubility and Partitioning of Hydrogen in the Alpha Phase of Zirconium, Zircaloy-2 and Zircaloy-4
,”
Journal of Nuclear Materials
22
(
1967
): 292–303.
5.
Motta
A. T.
,
Capolungo
L.
,
Chen
L.-Q.
,
Cinbiz
M. N.
,
Daymond
M. R.
,
Koss
D. A.
,
Lacroix
E.
, et al
, “
Hydrogen in Zirconium Alloys: A Review
,”
Journal of Nuclear Materials
518
(
2019
): 440–460
6.
Zhao
Z.
,
Morniroli
J.-P.
,
Legris
A.
,
Ambard
A.
,
Khin
Y.
,
Legris
L.
,
Yrieix
M. Blat
-
, “
Identification and Characterization of a New Zirconium Hydride
,”
Journal of Microscopy
232
, no.
3
(
2008
): 410–421.
7.
Christensen
M.
,
Wolf
W.
,
Freeman
C.
,
Wimmer
E.
,
Adamson
R. B.
,
Hallstadius
L.
,
Cantonwine
P. E.
, and
Mader
E. V.
, “
H in α-Zr and in Zirconium Hydrides: Solubility, Effect on Dimensional Changes, and the Role of Defects
,”
Journal of Physics: Condensed Matter
27
, no.
2
(
2015
): 25402.
8.
Sidhu
S. S.
,
Murthy
N. S.
S.
,
Campos
F. P.
, and
Zauberis
D. D.
, “
Neutron and X-Ray Diffraction Studies of Nonstoichiometric Metal Hydrides
,” in
Nonstoichiometric Compounds, Advances in Chemistry Series
, vol.
39
, ed.
Ward
R.
(
Washington, DC
:
American Chemical Society
,
1963
), 87–98.
9.
Domain
C.
,
Besson
R.
, and
Legris
A.
, “
Atomic-Scale Ab-Initio Study of the Zr-H System: I. Bulk Properties
,”
Acta Materialia
50
, no.
13
(
2002
): 3513–3526.
10.
Weatherly
G. C.
, “
The Precipitation of γ-Hydride Plates in Zirconium
,”
Acta Metallurgica
29
, no.
3
(
1981
): 501–512.
11.
Kolesnikov
A. I.
,
Balagurov
A. M.
,
Bashkin
I. O.
,
Belushkin
A. V.
,
Ponyatovsky
E. G.
, and
Prager
M.
, “
Neutron Scattering Studies of Ordered Gamma ZrD
,”
Journal of Physics: Condensed Matter
6
, no.
43
(
1994
): 8977–8988.
12.
Long
F.
,
Badr
N. N.
,
Yao
Z.
, and
Daymond
M. R.
, “
Characterizing the Crystal Structure and Formation Induced Plasticity of γ-Hydride Phase in Zirconium
,”
Materialia
8
(
2019
),
13.
McRae
G. A.
and
Coleman
C. E.
, “
Precipitates in Metals that Dissolve on Cooling and Form on Heating: An Example with Hydrogen in Alpha-Zirconium
,”
Journal of Nuclear Materials
499
(
2018
): 622–640.
14.
Tunes
M. A.
,
Silva
C. M.
, and
Edmondson
P. D.
, “
Site Specific Dependencies of Hydrogen Concentrations in Zirconium Hydrides
,”
Scripta Materialia
158
(
2019
): 136–140.
15.
Daum
R. S.
,
Chu
Y. S.
, and
Motta
A. T.
, “
Identification and Quantification of Hydride Phases in Zircaloy-4 Cladding Using Synchrotron X-Ray Diffraction
,”
Journal of Nuclear Materials
392
, no.
3
(
2009
): 453–463.
16.
Root
J. H.
and
Fong
R. W.
L.
, “
Neutron Diffraction Study of the Precipitation and Dissolution of Hydrides in Zr-2.5Nb Pressure Tube Material
,”
Journal of Nuclear Materials
232
, no.
1
(
1996
): 75–85.
17.
Bailey
J. E.
, “
Electron Microscope Observations on the Precipitation of Zirconium Hydride in Zirconium
,”
Acta Materialia
11
, no.
4
(
1963
): 267–280.
18.
Woo
O. T.
and
Carpenter
G. J.
C.
, “
EELS Characterization of Zirconium Hydrides
,”
Microscopy, Microanalysis, Microstructures
3
, no.
1
(
1992
): 35–44.
19.
International Center for Diffraction Data
,
Powder Diffraction File
(
Newton Square, PA
:
ICDD
,
2006
).
20.
Numakura
H.
and
Koiwa
M.
, “
Hydride Precipitation in Titanium
,”
Acta Metallurgica
32
, no.
10
(
1984
): 1799–1807.
21.
Cann
C. D.
and
Atens
A.
, “
A Metallographic Study of the Terminal Solubility of Hydrogen in Zirconium at Low Hydrogen Concentrations
,”
Journal of Nuclear Materials
88
(
1980
): 42–50.
22.
Nath
B.
,
Lorimer
G. W.
, and
Ridley
N.
, “
Effect of Hydrogen Concentration and Cooling Rate on Hydride Precipitation in α-Zirconium
,”
Journal of Nuclear Materials
58
(
1975
): 153–162.
23.
Tulk
E.
,
Kerr
M.
, and
Daymond
M. R.
, “
Study on the Effects of Matrix Yield Strength on Hydride Phase Stability in Zircaloy-2 and Zr 2.5Nb
,”
Journal of Nuclear Materials
425
, nos.
1–3
(
2012
): 93–104.
24.
Cann
C. D.
,
Puls
M. P.
,
Sexton
E. E.
, and
Hutchings
W. G.
, “
The Effect of Metallurgical Factors on Hydride Phases in Zirconium
,”
Journal of Nuclear Materials
126
, no.
3
(
1984
): 197–205.
25.
Lanzani
L.
and
Ruch
M.
, “
Comments on the Stability of Zirconium Hydride Phases in Zircaloy
,”
Journal of Nuclear Materials
324
, nos.
2–3
(
2004
): 165–176.
26.
Nath
B.
,
Lorimer
G. W.
, and
Ridley
N.
, “
The Relationship between Gamma and Delta Hydrides in Zirconium-Hydrogen Alloys of Low Hydrogen Concentration
,”
Journal of Nuclear Materials
49
(
1973
): 262–280.
27.
Maimaitiyili
T.
,
Bjerken
C.
,
Steuwer
A.
,
Wang
Z.
,
Daniels
J.
,
Andrieux
J.
,
Blomquist
J.
, and
Zanellato
O.
, “
In Situ Observation of γ-ZrH Formation by X-Ray Diffraction
,”
Journal of Alloys and Compounds
695
(
2017
): 3124–3130.
28.
Root
J. H.
,
Small
W. M.
,
Khatamian
D.
, and
Woo
O. T.
, “
Kinetics of the δ to γ Zirconium Hydride Transformation in Zr-2.5Nb
,”
Acta Materialia
51
, no.
7
(
2003
): 2041–2053.
29.
Barrow
A. T.
W.
,
Korinek
A.
, and
Daymond
M. R.
, “
Evaluating Zirconium-Zirconium Hydride Interfacial Strains by Nano-Beam Electron Diffraction
,”
Journal of Nuclear Materials
432
, nos.
1–3
(
2013
): 366–370.
30.
Hanlon
S. M.
,
Persaud
S. Y.
,
Long
F.
,
Korinek
A.
, and
Daymond
M. R.
, “
A Solution to FIB Induced Artefact Hydrides in Zr Alloys
,”
Journal of Nuclear Materials
515
(
2019
): 122–134.
31.
Breen
A. J.
,
Mouton
I.
,
Lu
W.
,
Wang
S.
,
Szczepaniak
A.
,
Kontis
P.
,
Stephenson
L. T.
 et al
, “
Atomic Scale Analysis of Grain Boundary Deuteride Growth Front in Zircaloy-4
,”
Scripta Materialia
156
(
2018
): 42–46.
32.
Hammersley
A. P.
, “
FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization Program
,”
Journal of Applied Crystallography
49
, no.
2
(
2016
): 646–652.
33.
Colas
K. B.
,
Motta
A. T.
,
Daymond
M. R.
,
Kerr
M.
, and
Almer
J. D.
, “
Hydride Platelet Reorientation in Zircaloy Studied with Synchrotron Radiation Diffraction
,”
Journal of ASTM International
8
, no.
1
(
2011
),
34.
Cinbiz
M. N.
,
Koss
D. A.
,
Motta
A. T.
,
Park
J. S.
, and
Almer
J. D.
, “
In Situ Synchrotron X-Ray Diffraction Study of Hydrides in Zircaloy-4 during Thermomechanical Cycling
,”
Journal of Nuclear Materials
487
(
2017
): 247–259.
35.
Santisteban
J. R.
,
Alvarez
M. A.
Vicente
-
,
Vizcaíno
P.
,
Banchik
A. D.
, and
Almer
J. D.
, “
Hydride Precipitation and Stresses in Zircaloy-4 Observed by Synchrotron X-Ray Diffraction
,”
Acta Materialia
58
, no.
20
(
2010
): 6609–6618.
36.
Almer
J.
,
Lienert
U.
,
Peng
R. L.
,
Schlauer
C.
, and
Odén
M.
, “
Strain and Texture Analysis of Coatings Using High-Energy X-Rays
,”
Journal of Applied Physics
94
, no.
1
(
2003
): 697–702.
37.
Yamanaka
S.
,
Yamada
K.
,
Kurosaki
K.
,
Uno
M.
,
Takeda
K.
,
Anada
H.
,
Matsuda
T.
, and
Kobayashi
S.
, “
Characteristics of Zirconium Hydride and Deuteride
,”
Journal of Alloys Compounds
330–332
, no.
17
(
2002
): 99–104.
38.
Bradbrook
J. S.
,
Lorimer
G. W.
, and
Ridley
N.
, “
The Precipitation of Zirconium Hydride in Zirconium and Zircaloy-2
,”
Journal of Nuclear Materials
42
(
1972
): 142–160.
39.
Northwood
D. O.
and
Lim
D. T.
H.
, “
A TEM Metallographic Study of Hydrides in a Zr-2.5Nb Alloy
,”
Metallography
14
, no.
1
(
1981
): 21–35.
40.
Carpenter
G. J.
C.
, “
The Dilatational Misfit of Zirconium Hydrides Precipitated in Zirconium
,”
Journal of Nuclear Materials
48
(
1973
): 264–266.
41.
Leitch
B. W.
and
Puls
M. P.
, “
Finite Element Calculations of the Accommodation Energy of a Misfitting Precipitate in an Elastic-Plastic Matrix
,”
Metallurgical and Materials Transactions A
23
, no.
3
(
1992
): 797–806.
42.
De Graef
M.
,
Introduction to Conventional Transmission Electron Microscopy
(
Oxford, UK
:
Cambridge University Press
,
2003
).
43.
Dahmen
U.
,
Ferguson
P.
, and
Westmacott
K. H.
, “
Invariant Line Strain and Needle-Precipitate Growth Directions in Fe-Cu
,”
Acta Metallurgica
32
, no.
5
(
1984
): 803–810.
44.
Zhao
Z.
,
Yrieix
M. Blat
-
,
Morniroli
J.
,
Legris
A.
,
Thuinet
L.
,
Kihn
Y.
,
Ambard
A.
, and
Legras
L.
, “
Characterization of Zirconium Hydrides and Phase Field Approach to a Mesoscopic-Scale Modeling of Their Precipitation
,”
Journal of ASTM International
5
, no.
3
(
2008
): 29–50,
45.
Blackmur
M. S.
,
Dumbill
S.
,
MacLaren
I.
,
Maldonado
D. Hernandez
-
,
Styman
P. D.
,
Gass
M.
,
Nicholls
R. J.
, et al
, “
The Association of Hydrogen with Nanometre Bubbles of Helium Implanted into Zirconium
,”
Scripta Materialia
152
(
2018
): 102–106.
46.
Williams
D. B.
and
Edington
J. W.
, “
High Resolution Microanalysis in Materials Science Using Electron Energy Loss Measurements
,”
Journal of Microscopy
108
, no.
2
(
1976
): 113–145.
47.
Egerton
R. F.
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
, 3rd ed. (
Boston
:
Springer
,
2011
).
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal