Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 19th International Symposium
By
Arthur T. Motta
Arthur T. Motta
Symposium Chair and STP Editor
1
Penn State University
,
University Park, PA,
US
Search for other works by this author on:
Suresh K. Yagnik
Suresh K. Yagnik
Symposium Chair and STP Editor
2
Electric Power Research Institute (EPRI)
,
Palo Alto, CA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7690-4
No. of Pages:
968
Publisher:
ASTM International
Publication date:
2021

In this study, deformation experiments together with high-resolution digital image correlation were used to quantify the effect of proton irradiation on strain localization in Zircaloy-4 loaded along the rolling and transverse directions. Significant increases in strain heterogeneity were measured in the irradiated material compared to the nonirradiated material. This was a result of confinement of slip to channels in the irradiated material, which contain high effective shear strain values, with almost no strain in the regions between channels. The active slip systems in the material were also determined by comparing experimental slip trace angles from high-resolution digital image correlation with theoretical slip trace angles determined using grain orientation from electron backscatter diffraction. An increased amount of pyramidal and wavy basal slip, as well as tension twinning, were observed in the sample loaded along the transverse direction, compared to the sample loaded along the rolling direction, due to crystallographic texture. No significant change in slip system activity was observed as a result of 0.1 dpa proton irradiation, despite the dramatic change in slip pattern. The findings provide further insight into the role of irradiation on deformation behavior and provide quantitative data on slip system activation, for as-received and irradiated Zircaloy-4, against which to validate models.

1.
Byun
T.
and
Hashimoto
N.
, “
Strain Localization in Irradiated Materials
,”
Nuclear Engineering and Technology
38
(
2006
): 619–638.
2.
Byun
T. S.
and
Farrell
K.
, “
Plastic Instability in Polycrystalline Metals after Low Temperature Irradiation
,”
Acta Materialia
52
(
2004
): 1597–1608,
3.
Griffiths
M.
, “
A Review of Microstructure Evolution in Zirconium Alloys during Irradiation
,”
Journal of Nuclear Materials
159
(
1988
): 190–218,
4.
Onimus
F.
,
Béchade
J. L.
,
Duguay
C.
,
Gilbon
D.
, and
Pilvin
P.
, “
Investigation of Neutron Radiation Effects on the Mechanical Behavior of Recrystallized Zirconium Alloys
,”
Journal of Nuclear Materials
358
(
2006
): 176–189,
5.
Onimus
F.
,
Monnet
I.
,
Béchade
J. L.
,
Prioul
C.
, and
Pilvin
P.
, “
A Statistical TEM Investigation of Dislocation Channeling Mechanism in Neutron Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
328
(
2004
): 165–179,
6.
Onchi
T.
,
Kayano
H.
, and
Higashiguchi
Y.
, “
The Inhomogeneous Deformation Behaviour of Neutron Irradiated Zircaloy-2
,”
Journal of Nuclear Materials
88
(
1980
): 226–235,
7.
Farrell
K.
,
Byun
T. S.
, and
Hashimoto
N.
, “
Deformation Mode Maps for Tensile Deformation of Neutron-Irradiated Structural Alloys
,”
Journal of Nuclear Materials
335
(
2004
): 471–486,
8.
Onchi
T.
,
Kayano
H.
, and
Higashiguchi
Y.
, “
Effect of Neutron Irradiation on Deformation Behavior of Zirconium
,”
Journal of Nuclear Science and Technology
14
(
1977
): 359–369,
9.
Onimus
F.
,
Béchade
J.
,
Prioul
C.
,
Pilvin
P.
,
Monnet
I.
,
Verhaeghe
B.
,
Gilbon
D.
,
Robert
L.
, and
Legras
L.
, “
Plastic Deformation of Irradiated Zirconium Alloys: TEM Investigations and Micro-Mechanical Modeling
,”
Journal of ASTM International
2
(
2005
): 1–24,
10.
Echlin
M. P.
,
Stinville
J. C.
,
Miller
V. M.
,
Lenthe
W. C.
, and
Pollock
T. M.
, “
Incipient Slip and Long Range Plastic Strain Localization in Microtextured Ti-6Al-4V Titanium
,”
Acta Materialia
114
(
2016
): 164–175,
11.
Orozco-Caballero
A.
,
Lunt
D.
, and
Robson
J. D.
, “
How Magnesium Accommodates Local Deformation Incompatibility: A High-Resolution Digital Image Correlation Study
,”
Acta Materialia
133
(
2017
): 367–379,
12.
Lunt
D.
,
Busolo
T.
,
Xu
X.
,
Quinta da Fonseca
J.
, and
Preuss
M.
, “
Effect of Nanoscale α2 Precipitation on Strain Localization in a Two-Phase Ti-Alloy
,”
Acta Materialia
129
(
2017
): 72–82,
13.
Quinta Da Fonseca
J.
,
Mummery
P. M.
, and
Withers
P. J.
, “
Full-Field Strain Mapping by Optical Correlation of Micrographs Acquired during Deformation
,”
Journal of Microscopy
218
(
2005
): 9–21,
14.
Di Gioacchino
F.
and
Quinta da Fonseca
J.
, “
Plastic Strain Mapping with Sub-Micron Resolution Using Digital Image Correlation
,”
Experimental Mechanics
53
(
2013
): 743–754,
15.
Bridier
F.
,
Villechaise
P.
, and
Mendez
J.
, “
Analysis of the Different Slip Systems Activated by Tension in an α+β Titanium Alloy in Relation with Local Crystallographic Orientation
,”
Acta Materialia
53
(
2005
) 555–567,
16.
Tenckhoff
E.
, “
Review of Deformation Mechanisms, Texture, and Mechanical Anisotropy in Zirconium and Zirconium Base Alloys
,”
Journal of ASTM International
2
(
2005
) 1–26,
17.
Gong
J.
,
Benjamin Britton
T.
,
Cuddihy
M. A.
,
Dunne
F. P.
E.
, and
Wilkinson
A. J.
, “
〈a〉 Prismatic, 〈a〉 Basal, and 〈c+a〉 Slip Strengths of Commercially Pure Zr by Micro-Cantilever Tests
,”
Acta Materialia
96
(
2015
): 249–257,
18.
Tournadre
L.
,
Onimus
F.
,
Béchade
J. L.
,
Gilbon
D.
,
Cloué
J. M.
,
Mardon
J. P.
, and
Feaugas
X.
, “
Toward a Better Understanding of the Hydrogen Impact on the Radiation Induced Growth of Zirconium Alloys
,”
Journal of Nuclear Materials
441
(
2013
): 222–231,
19.
Harte
A.
,
Topping
M.
,
Frankel
P.
,
Jädernäs
D.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
Nano-Scale Chemical Evolution in a Proton- and Neutron-Irradiated Zr Alloy
,”
Journal of Nuclear Materials
487
(
2017
): 30–42,
20.
Harte
A.
,
Jädernäs
D.
,
Topping
M.
,
Frankel
P.
,
Race
C. P.
,
Romero
J.
,
Hallstadius
L.
,
Darby
E. C.
, and
Preuss
M.
, “
The Effect of Matrix Chemistry on Dislocation Evolution in an Irradiated Zr Alloy
,”
Acta Materialia
130
(
2017
): 69–82,
21.
Sarkar
A.
,
Kumar
A.
,
Mukherjee
S.
,
Sharma
S. K.
,
Dutta
D.
,
Pujari
P. K.
,
Agarwal
A.
,
Gupta
S. K.
,
Singh
P.
, and
Chakravartty
J. K.
, “
Investigation of Microstructure and Mechanical Properties of Proton Irradiated Zircaloy 2
,”
Journal of Nuclear Materials
479
(
2016
): 524–532,
22.
Fournier
L.
,
Serres
A.
,
Auzoux
Q.
,
Leboulch
D.
, and
Was
G. S.
, “
Proton Irradiation Effect on Microstructure, Strain Localization and Iodine-Induced Stress Corrosion Cracking in Zircaloy-4
,”
Journal of Nuclear Materials
384
(
2009
): 38–47,
23.
Zu
X. T.
,
Sun
K.
,
Atzmon
M.
,
Wang
L. M.
,
You
L. P.
,
Wan
F. R.
,
Busby
J. T.
,
Was
G. S.
, and
Adamson
R. B.
, “
Effect of Proton and Ne Irradiation on the Microstructure of Zircaloy 4
,”
Philosophical Magazine
85
(
2005
): 649–659,
24.
Thomas
R.
,
Lunt
D.
,
Atkinson
M.
,
Quinta
J.
,
Preuss
M.
,
Barton
F.
,
Hanlon
J. O.
, and
Frankel
P.
, “
Characterisation of Irradiation Enhanced Strain Localisation in Zr Alloys
,”
Materialia
5
(
2019
): 100248,
25.
Northwood
D. O.
, “
The Development and Applications of Zirconium Alloys
,”
Materials & Design
6
(
1985
): 58–70,
26.
Wady
P. T.
,
Draude
A.
,
Shubeita
S. M.
,
Smith
A. D.
,
Mason
N.
,
Pimblott
S. M.
, and
Jimenez-Melero
E.
, “
Accelerated Radiation Damage Test Facility Using a 5 MV Tandem Ion Accelerator
,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment
806
(
2015
): 109–116,
27.
Stoller
R. E.
,
Toloczko
M. B.
,
Was
G. S.
,
Certain
A. G.
,
Dwaraknath
S.
, and
Garner
F. A.
, “
On the Use of SRIM for Computing Radiation Damage Exposure
,”
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
310
(
2013
): 75–80,
28.
Was
G. S.
,
Fundamentals of Radiation Damage Materials Science
(
New York
:
Springer
,
2007
).
29.
Topping
M.
,
Harte
A.
,
Ungár
T.
,
Race
C. P.
,
Dumbill
S.
,
Frankel
P.
, and
Preuss
M.
, “
The Effect of Irradiation Temperature on Damage Structures in Proton-Irradiated Zirconium Alloys
,”
Journal of Nuclear Materials
514
(
2019
): 358–367,
30.
Lunt
D.
,
Orozco-Caballero
A.
,
Thomas
R.
,
Honniball
P.
,
Frankel
P.
,
Preuss
M.
, and
Quinta da Fonseca
J.
, “
Enabling High Resolution Strain Mapping in Zirconium Alloys
,”
Materials Characterization
139
(
2018
): 355–363,
31.
Shao
Z.
and
Lin
P. S.
D.
, “
High-Resolution Low-Voltage Electron Optical System for Very Large Specimens
,”
Review of Scientific Instruments
60
(
1989
): 3434–3441,
32.
Preibisch
S.
,
Saalfeld
S.
, and
Tomancak
P.
, “
Globally Optimal Stitching of Tiled 3D Microscopic Image Acquisitions
,”
Bioinformatics
25
(
2009
): 1463–1465,
33.
Van Der Walt
S.
,
Colbert
S. C.
, and
Varoquaux
G.
, “
The NumPy Array: A Structure for Efficient Numerical Computation
,”
Computer Science and Engineering
13
(
2011
): 22–30,
34.
Hunter
J. D.
, “
Matplotlib: A 2D Graphics Environment
,”
Computer Science and Engineering
9
(
2007
): 99–104,
35.
Mozzani
N.
,
Auzoux
Q.
,
Boulch
D. Le
,
Andrieu
E.
,
Blanc
C.
,
Scott
C. P.
, and
Barnel
N.
, “
Mechanical Behavior of Recrystallized Zircaloy-4 under Monotonic Loading at Room Temperature: Tests and Simplified Anisotropic Modeling
,”
Journal of Nuclear Materials
447
(
2014
): 94–106,
36.
Xu
F.
,
Holt
R. A.
, and
Daymond
M. R.
, “
Modeling Lattice Strain Evolution during Uniaxial Deformation of Textured Zircaloy-2
,”
Acta Materialia
56
(
2008
): 3672–3687,
37.
Higgy
H. R.
and
Hammad
F. H.
, “
Effect of Neutron Irradiation on the Tensile Properties of Zircaloy-2 and Zircaloy-4
,”
Journal of Nuclear Materials
44
(
1972
): 215–227,
38.
Zu
X. T.
,
Atzmon
M.
,
Wang
L. M.
,
Pou
L. P.
,
Wan
F. R.
,
Was
G. S.
, and
Adamson
R. B.
, “
Effect of Ion Irradiation on Microstructure and Hardness in Zircaloy-4
,” in
Effects of Radiation on Materials: 21st International Symposium
, ed.
Grossbeck
M. L.
,
Allen
T. R.
,
Lott
R. G.
, and
Kumar
A. S.
(
West Conshohocken, PA
:
ASTM International
,
2004
), 741–752,
39.
Yang
H. L.
,
Kano
S.
,
McGrady
J.
,
Shen
J. J.
,
Matsukawa
Y.
,
Chen
D. Y.
,
Murakami
K.
, and
Abe
H.
, “
Surface Orientation Dependence of Irradiation-Induced Hardening in a Polycrystalline Zirconium Alloy
,”
Scripta Materialia
162
(
2019
): 209–213,
40.
Caillard
D.
,
Gaumé
M.
, and
Onimus
F.
, “
Glide and Cross-Slip of a-Dislocations in Zr and Ti
,”
Acta Materialia
155
(
2018
): 23–34,
41.
Regnard
C.
,
Verhaeghe
B.
,
Lefebvre-Joud
F.
, and
Lemaignan
C.
, “
Activated Slip Systems and Localized Straining of Irradiated Zr Alloys in Circumferential Loadings
,” in
Zirconium in the Nuclear Industry: Thirteenth International Symposium
, ed.
Moan
G.
and
Rudling
P.
(
West Conshohocken, PA
:
ASTM International
,
2002
), 384–399,
42.
Ungár
T.
,
Castelnau
O.
,
Ribárik
G.
,
Drakopoulos
M.
,
Béchade
J. L.
,
Chauveau
T.
,
Snigirev
A.
,
Snigireva
I.
,
Schroer
C.
, and
Bacroix
B.
, “
Grain to Grain Slip Activity in Plastically Deformed Zr Determined by X-Ray Micro-Diffraction Line Profile Analysis
,”
Acta Materialia
55
(
2007
): 1117–1127,
43.
Mani Krishna
K. V.
,
Leo Prakash
D. G.
,
Timar
G.
,
Fitzner
A.
,
Srivastava
D.
,
Saibaba
N.
,
Quinta da Fonseca
J.
,
Dey
G. K.
, and
Preuss
M.
, “
The Effect of Loading Direction and Sn Alloying on the Deformation Modes of Zr: An In-Situ Neutron Diffraction Study
,”
Materials Science and Engineering A
650
(
2016
): 497–509,
44.
Adamson
R. B.
and
Bell
W. L.
, “
Effects of Neutron Irradiation and Oxygen Content on the Microstructure and Mechanical Properties of Zircaloy
,” in
Proceedings of International Symposium on Microstructure and Mechanical Behaviour of Materials, Xi’an, China
, (
Warley, UK
:
EMAS
,
1985
), 237–246.
45.
Long
F.
,
Balogh
L.
,
Brown
D. W.
,
Mosbrucker
P.
,
Skippon
T.
,
Judge
C. D.
, and
Daymond
M. R.
, “
Effect of Neutron Irradiation on Deformation Mechanisms Operating during Tensile Testing of Zr-2.5Nb
,”
Acta Materialia
102
(
2016
): 352–363,
46.
Balogh
L.
,
Brown
D. W.
,
Mosbrucker
P.
,
Long
F.
, and
Daymond
M. R.
, “
Dislocation Structure Evolution Induced by Irradiation and Plastic Deformation in the Zr-2.5Nb Nuclear Structural Material Determined by Neutron Diffraction Line Profile Analysis
,”
Acta Materialia
60
(
2012
): 5567–5577,
47.
Bourdiliau
B.
,
Onimus
F.
,
Cappelaere
C.
,
Pivetaud
V.
,
Bouffioux
P.
,
Chabretou
V.
, and
Miquet
A.
, “
Impact of Irradiation Damage Recovery during Transportation on the Subsequent Room Temperature Tensile Behavior of Irradiated Zirconium Alloys
,” in
Zirconium in the Nuclear Industry: Sixteenth International Symposium
, ed.
Limbäck
M.
and
Barbéris
Pierre
(
West Conshohocken, PA
:
ASTM International
,
2012
), 929–953,
48.
Marano
A.
,
Gélébart
L.
, and
Forest
S.
, “
Intragranular Localization Induced by Softening Crystal Plasticity: Analysis of Slip and Kink Bands Localization Modes from High Resolution FFT-Simulations Results
,”
Acta Materialia
175
(
2019
): 262–275,
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal