Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
100 Years of E04 Development of Metallography Standards
By
George F. Vander Voort
George F. Vander Voort
Symposium Chairman and STP Editor
1
Vander Voort Consulting LLC
,
Wadsworth, IL,
US
Search for other works by this author on:
ISBN:
978-0-8031-7659-1
No. of Pages:
190
Publisher:
ASTM International
Publication date:
2019

Dual phase (DP) steels are being increasingly used as structural components in the automotive industry owing to their combination of high strength and moderate ductility. Formability and crash resistance are important mechanical properties that expose the steel to high strain rates. Fracture characteristics of a DP steel at strain rates spanning seven orders of magnitude are investigated using quantitative fractography. The DP steel investigated in this study is comprised of a continuous matrix of martensite with interspersed ferrite islands. The data reveal that the flow stress, uniform strain, and ductility are substantially higher at the higher strain rates. Quantitative fractography, employed to understand the fracture characteristics, shows an increase in the extent of ductile fracture at high strain rates. In this presentation, the results demonstrating high strain rates facilitating dimpled ductile fracture and/or increased resistance to faceted fracture are discussed.

1.
Bhattacharya
,
D.
, “
Developments in Advanced High Strength Steels
,
Proceedings of the Joint International Conference of HSLA Steels 2005 and ISUGS 2015
,
Sanya, Hainan, China
, November 8–10,
2005
,
Beijing, China
, pp. 70–73.
2.
Kuziak
,
R.
,
Kawalla
,
R.
, and
Waengler
,
S.
, “
Advanced High Strength Steels for Automotive Industry
,”
Arch. Civ. Mech. Eng.
, Vol.
8
, No.
2
,
2008
, pp. 103–117.
3.
Kwon
,
O.
,
Lee
,
K.
,
Kim
,
G.
, and
Chin
,
K.-G.
, “
New Trends in Advanced High Strength Steel Developments for Automotive Application
,”
Mater. Sci. Forum
, Vols.
638–642
,
2010
, pp. 136–141.
4.
Rashid
,
M.
, “
Dual Phase Steels
,”
Annu. Rev. Mater. Sci.
, Vol.
11
, No.
1
,
1981
, pp. 245–266.
5.
Tasan
,
C. C.
,
Diehl
,
M.
,
Yan
,
D.
,
Bechtold
,
M.
,
Roters
,
F.
,
Schemmann
,
L.
,
Zheng
,
C.
, et al
, “
An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design
,”
Annu. Rev. Mater. Res.
, Vol.
45
,
2015
, pp. 391–431.
6.
Avramovic-Cingara
,
G.
,
Ososkov
,
Y.
,
Jain
,
M. K.
, and
Wilkinson
,
D. S.
, “
Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels
,”
Mater. Sci. Eng. A
, Vol.
516
, Nos.
1–2
,
2009
, pp. 7–16.
7.
Avramovic-Cingara
,
G.
,
Ososkov
,
Y.
,
Jain
,
M. K.
, and
Wilkinson
,
D. S.
, “
Void Nucleation and Growth in Dual-Phase Steel 600 during Uniaxial Tensile Testing
,”
Metall. Mater. Trans. A
, Vol.
40
, No.
13
,
2009
, pp. 7–16.
8.
Bag
,
A.
,
Ray
,
K.
, and
Dwarakadasa
,
E.
, “
Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels
,”
Metall. Mater. Trans. A
, Vol.
30
, No.
5
,
1999
, pp. 1193–1202.
9.
Calcagnotto
,
M.
,
Ponge
,
D.
,
Demir
,
E.
, and
Raabe
,
D.
, “
Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD
,”
Mater. Sci. Eng. A
, Vol.
527
, No.
10
,
2010
, pp. 2738–2746.
10.
Davies
,
R.
, “
Influence of Martensite Composition and Content on the Properties of Dual Phase Steels
,”
Metall. Trans. A
, Vol.
9
, No.
5
,
1978
, pp. 671–679.
11.
Kim
,
S.
and
Lee
,
S.
, “
Effects of Martensite Morphology and Volume Fraction on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steels
,”
Metall. Mater. Trans. A
, Vol.
31
, No.
7
,
2000
, pp. 1753–1760.
12.
Landron
,
C.
,
Bouaziz
,
O.
,
Maire
,
E.
, and
Adrien
,
J.
, “
Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels
,”
Scripta Mater.
, Vol.
63
, No.
10
,
2010
, pp. 973–976.
13.
Zhao
,
Z.
,
Ton
,
T.
,
Liang
,
J
,
Yin
,
H.
,
Zhao
,
A.
, and
Tang
,
D.
Microstructure, Mechanical Properties and Fracture Behavior of Ultra-High Strength Dual-Phase Steel
,”
Mater. Sci. Eng. A
, Vol.
618
,
2014
, pp. 182–188.
14.
Ramazani
,
A.
,
Schwedt
,
A.
,
Aretz
,
A.
,
Prahl
,
U.
, and
Bleck
,
W.
, “
Characterization and Modelling of Failure Initiation in DP Steel
,”
Comp. Mater. Sci.
, Vol.
75
,
2013
, pp. 35–44.
15.
Mazaheri
,
Y.
,
Kermanpur
,
A.
,
Najafizadeh
,
A.
, and
Saeidi
,
N.
, “
Effects of Initial Microstructure and Thermomechanical Processing Parameters on Microstructures and Mechanical Properties of Ultrafine Grained Dual Phase Steels
,”
Mater. Sci. Eng. A
, Vol.
612
,
2014
, pp. 54–62.
16.
Das
,
A.
,
Ghosh
,
M.
,
Tarafder
,
S.
,
Sivaprasad
,
S.
, and
Chakrabarti
,
D.
, “
Micromechanisms of Deformation in Dual Phase Steels at High Strain Rates
,”
Mater. Sci. Eng. A
, Vol.
680
,
2017
, pp. 249–258.
17.
Jamwal
,
R. S.
, “
Microstructural Origins of Variability in the Tensile Ductility of Dual Phase Steels
,” M.S. thesis,
Georgia Institute of Technology
, Atlanta, GA,
2011
.
18.
Sharma
,
S. M.
,
Mishra
,
K.
,
Rodriguez
,
O.
,
Whittington
,
W. R.
,
Allison
,
P.
,
Bhat
,
S. P.
,
Gokhale
,
A. M.
, and
Thadhani
,
N. N.
, “
Effects of Strain Rate on Mechanical Properties and Fracture Mechanisms in a Dual Phase Steel
,”
Dynamic Behavior of Materials, Volume 1
,
Kimberley
J.
,
Lamberson
L. E.
, and
Mates
S.
, Eds.,
Springer
,
Cham, Switzerland
,
2018
, pp. 209–216.
19.
Gronostajski
,
Z.
,
Niechajowicz
,
A.
,
Kuziak
,
R.
,
Krawczyak
,
J.
, and
Polak
,
S.
, “
The Effect of the Strain Rate on the Stress-Strain Curve and Microstructure of AHSS
,”
J. Mater. Process. Tech.
, Vol.
242
,
2017
, pp. 246–259.
20.
Wang
,
W.
,
Li
,
M.
,
He
,
C.
,
Wei
,
X.
,
Wang
,
D.
, and
Du
,
H.
, “
Experimental Study on High Strain Rate Behavior of High Strength 600–1000 MPa Dual Phase Steels and 1200 MPa Fully Martensitic Steels
,”
Mater. Design
, Vol.
47
,
2013
, pp. 510–521.
21.
Colla
,
V.
,
De Sanctis
,
M.
,
Dimatteo
,
A.
,
Lovicu
,
G.
,
Solina
,
A.
, and
Valentini
,
R.
, “
Strain Hardening Behavior of Dual-Phase Steels
,”
Metall. Mater. Trans. A
, Vol.
40
, No.
11
,
2009
, pp. 2557–2567.
22.
Huh
,
J.
,
Huh
,
H.
, and
Lee
,
C. S.
, “
Effect of Strain Rate on Plastic Anisotropy of Advanced High Strength Steel Sheets
,”
Int. J. Plasticity
, Vol.
44
,
2013
, pp. 23–46.
23.
Kim
,
J.-H.
,
Kim
,
D.
,
Han
,
H. N.
,
Barlat
,
F.
, and
Lee
,
M.-G.
, “
Strain Rate Dependent Tensile Behavior of Advanced High Strength Steels: Experiment and Constitutive Modeling
,”
Mater. Sci. Eng. A
, Vol.
559
,
2013
, pp. 222–231.
24.
Sun
,
X.
,
Soulami
,
A.
,
Choi
,
K. S.
,
Guzman
,
O.
, and
Chen
,
W.
, “
Effects of Sample Geometry and Loading Rate on Tensile Ductility of TRIP800 Steel
,”
Mater. Sci. Eng. A
, Vol.
541
,
2012
, pp. 1–7.
25.
Verleysen
,
P.
,
Degrieck
,
D.
,
Verstraete
,
T.
, and
Van Slycken
,
J.
, “
Influence of Specimen Geometry on Split Hopkinson Tensile Bar Tests on Sheet Materials
,”
Exp. Mech.
, Vol.
48
, No.
5
,
2008
, p. 587.
26.
Verleysen
,
P.
,
Peirs
,
J.
,
Van Slycken
,
J.
,
Faes
,
K.
, and
Duchene
,
L.
, “
Effect of Strain Rate on the Forming Behaviour of Sheet Metals
,”
J. Mater. Process. Tech.
, Vol.
211
, Vol.
8
,
2011
, pp. 1457–1464.
27.
DeHoff
,
R. T.
and
Rhines
,
F. N.
,
Quantitative Microscopy
,
McGraw-Hill
,
New York
,
1968
.
28.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
Appl. Mech. Rev.
, Vol.
57
, No.
4
,
2004
, pp. 223–250.
29.
Chen
,
W. W.
and
Song
,
B.
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer Science & Business Media
,
Berlin, Germany
,
2010
.
30.
Gokhale
,
A. M.
, “
Quantitative Fractography
,”
ASM Handbook, Volume 11, Failure Analysis and Prevention
,
Becker
W. T.
and
Shipley
R. J.
, Eds.,
ASM International
,
Materials Park, OH
,
2002
, pp. 1114–1162.
31.
Gokhale
,
A. M.
, “
Estimation of Length Density Lv from Vertical Slices of Unknown Thickness
,”
J. Microsc.
, Vol.
167
, No.
1
,
1992
, pp. 1–8.
32.
Gokhale
,
A. M.
, “
Quantitative Characterization and Representation of Global Microstructural Geometry
,”
ASM Handbook, Volume 9, Metallagraphy and Microstructures
,
Vander Voort
G. F.
, Ed.,
ASM International
,
Materials Park, OH
,
2013
, pp. 428–447.
33.
Gundersen
,
H. J. G.
, “
Notes on the Estimation of the Numerical Density of Arbitrary Profiles: The Edge Effect
,”
J. Microsc.
, Vol.
111
, No.
2
,
1977
, pp. 219–223.
34.
Karlsson
,
L.
and
Gokhale
,
A.
, “
Stereological Estimation of Mean Linear Intercept Length Using the Vertical Sections and Trisector Methods
,”
J. Microsc.
, Vol.
186
, No.
2
,
1997
, pp. 143–152.
35.
Underwood
,
E. E.
, “
The Mathematical Foundations of Quantitative Stereology
,”
Stereology and Quantitative Metallography, ASTM STP504
,
Pellissier
G. E.
and
Purdy
S. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1972
, pp. 4–7,
36.
Khan
,
A. S.
and
Liang
,
R.
, “
Behaviors of Three BCC Metal over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling
,”
Int. J. Plasticity
, Vol.
15
, No.
10
,
1999
, pp. 1089–1109.
37.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
P. Roy. Soc. Lond. A Mat.
, Vol.
435
, No.
1894
,
1991
, pp. 371–391.
38.
Hutchinson
,
J.
and
Neale
,
K.
, “
Influence of Strain-Rate Sensitivity on Necking under Uniaxial Tension
,”
Acta Metall.
, Vol.
25
, No.
8
,
1977
, pp. 839–846.
39.
Kapoor
,
R.
and
Nemat-Nasser
,
S.
, “
Determination of Temperature Rise during High Strain Rate Deformation
,”
Mech. Mater.
, Vol.
27
, No.
1
,
1998
, pp. 1–12.
40.
Mason
,
J.
,
Rosakis
,
A.
, and
Ravichandran
,
G.
, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
, Vol.
17
, Nos.
2–3
,
1994
, pp. 135–145.
41.
Mishra
,
K.
, “
Effects of Microstructure and Strain Rate on Deformation Behavior in Advanced High Strength Steels
,” Ph.D. dissertation,
Georgia Institute of Technology
,
2017
.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal