Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Pesticide Formulation and Delivery Systems: 38th Volume, Innovative Application, Formulation, and Adjuvant Technologies
By
Bradley K. Fritz
Bradley K. Fritz
Symposium Chair and STP Editor
1
United States Department of Agriculture, ARS Aerial Application Technology Research Unit
,
College Station, TX,
US
Search for other works by this author on:
Thomas R. Butts
Thomas R. Butts
Symposium Chair and STP Editor
2
University of Nebraska-Lincoln
,
North Platte, NE,
US
Search for other works by this author on:
ISBN:
978-0-8031-7665-2
No. of Pages:
156
Publisher:
ASTM International
Publication date:
2018

Concern about pesticide drift has increased dramatically in recent years. An emphasis on increasing spray droplet size to mitigate off-target particle movement has occurred in response to this concern. Venturi nozzles were designed to create coarser droplets by entraining air within the spray solution in the nozzle body. In field applications, dirt, fertilizer, and other debris can plug air-inclusion ports. The objective of our research was to identify the impact of plugged air-inclusion ports on the droplet-size distribution of multiple venturi nozzles. The study was conducted using the low-speed wind tunnel at the Pesticide Application Technology Laboratory in North Platte, NE. Droplet-size distributions for five venturi nozzles and two orifice sizes (Air Induction [AI11004 and AI11006], Air Induction Extended Range [AIXR11004 and AIXR11006], Turbo TeeJet Induction [TTI11004 and TTI11006], Turbo Drop [TDXL11004 and TDXL11006], and Ultra Lo-Drift [ULD12004 and ULD12006]) were measured in combination with plugged or unobstructed air-inclusion ports, providing 28 total treatments. Measurements were made using a Sympatec HELOS-VARIO/KR laser diffraction system while testing water sprayed at 276 kPa. Similar patterns in droplet-size distribution within nozzles were observed across orifice sizes. When air-inclusion ports were plugged, the Dv0.1, Dv0.5, and Dv0.9 decreased for the AI and TDXL nozzles, remained relatively unchanged for the AIXR and ULD nozzles, and increased for the TTI nozzle. In addition, the percentage of fines less than 150 µm increased for the AI and TDXL nozzles, remained relatively unchanged for the AIXR and ULD nozzles, and decreased for the TTI nozzle when air-inclusion ports were plugged. This research helps to better understand the drift mitigation implications if debris were to plug venturi nozzle air-inclusion ports.

1.
Ebert
,
T. A.
,
Taylor
,
R. A. J.
,
Downer
,
R. A.
, and
Hall
,
F. R.
, “
Deposit Structure and Efficacy of Pesticide Application. 1: Interactions between Deposit Size, Toxicant Concentration and Deposit Number
,”
Pestic. Sci.
, Vol.
55
,
1999
, pp. 783–792.
2.
Matthews
,
G.
,
Bateman
,
R.
, and
Miller
,
P.
,
Pesticide Application Methods
, 4th ed.,
Wiley-Blackwell
,
Hoboken, NJ
,
2014
.
3.
Bouse
,
L. F.
, “
Effect of Nozzle Type and Operation on Spray Droplet Size
,”
Trans. ASAE
, Vol.
37
, No.
5
,
1994
, pp. 1389–1400.
4.
Creech
,
C. F.
,
Henry
,
R. S.
,
Fritz
,
B. K.
, and
Kruger
,
G. R.
, “
Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics
,”
Weed Technol.
, Vol.
29
, No.
2
,
2015
, pp. 298–310.
5.
Nuyttens
,
D.
,
Baetens
,
K.
, De
Schampheleire
,
M.
, and
Sonck
,
B.
, “
Effect of Nozzle Type, Size and Pressure on Spray Droplet Characteristics
,”
Biosyst. Eng.
, Vol.
97
, No.
3
,
2007
, pp. 333–345.
6.
Butler Ellis
,
M. C.
and
Tuck
,
C. R.
, “
The Variation in Characteristics of Air-Included Sprays with Adjuvants
,”
Asp. Appl. Biol.
, Vol.
57
,
2000
, pp. 155–162.
7.
Butler Ellis
,
M.
,
Swan
,
T.
,
Miller
,
P. C. H.
,
Waddelow
,
S.
,
Bradley
,
A.
, and
Tuck
,
C. R.
, “
PM—Power and Machinery: Design Factors Affecting Spray Characteristics and Drift Performance of Air Induction Nozzles
,”
Biosyst. Eng.
, Vol.
82
, No.
3
,
2002
, pp. 289–296.
8.
Czaczyk
,
Z.
,
Kruger
,
G. R.
, and
Hewitt
,
A.
, “
Droplet Size Classification of Air Induction Flat Fan Nozzles
,”
J. Plant Prot. Res.
, Vol.
52
, No.
4
,
2012
, pp. 415–420.
9.
Barnett
,
G. S.
and
Matthews
,
G. A.
, “
Effect of Different Fan Nozzles and Spray Liquids on Droplet Spectra with Special Reference to Drift Control
,”
Int. Pest. Contr.
, Vol.
34
, No.
3
,
1992
, pp. 81–85.
10.
Hewitt
,
A. J.
, “
Droplet Size and Agricultural Spraying, Part I: Atomization, Spray Transport, Deposition, Drift, and Droplet Size Measurement Techniques
,”
Atom. Spray
, Vol.
7
, No.
3
,
1997
, pp. 235–244.
11.
Zhu
,
H.
,
Reichard
,
D. L.
,
Fox
,
R. D.
,
Brazee
,
R. D.
, and
Ozkan
,
H. E.
, “
Simulation of Drift of Discrete Sizes of Water Droplets from Field Sprayers
,”
Trans. ASAE
, Vol.
37
, No.
5
,
1994
, pp. 1401–1407.
12.
Zhu
,
H.
,
Reichard
,
D. L.
,
Fox
,
R. D.
,
Ozkan
,
H. E.
, and
Brazee
,
R. D.
, “
DRIFTSIM, a Program to Estimate Drift Distances of Spray Droplets
,”
Appl. Eng. Agric.
, Vol.
11
, No.
3
,
1994
, pp. 365–369.
13.
Miller
,
P. C. H.
and
Hadfield
,
D. J.
, “
A Simulation Model of the Spray Drift from Hydraulic Nozzles
,”
J. Agric. Eng. Res.
, Vol.
42
, No.
2
,
1989
, pp. 135–147.
14.
Hobson
,
P. A.
,
Miller
,
P. C. H.
,
Walklate
,
P. J.
,
Tuck
,
C. R.
, and
Western
,
N. M.
, “
Spray Drift from Hydraulic Spray Nozzles: The Use of a Computer Simulation Model to Examine Factors Influencing Drift
,”
J. Agric. Eng. Res.
, Vol.
54
, No.
4
,
1993
, pp. 293–305.
15.
Young
,
B. W.
, “
Droplet Dynamics in Hydraulic Nozzle Spray Clouds
,”
Pesticide Formulations and Application Systems: 10th Volume, ASTM STP1078
,
Bode
L. E.
,
Hazen
J. L.
, and
Chasin
D. G.
, Eds.,
ASTM International
,
Philadelphia, PA
,
1990
, pp. 142–155.
16.
Bueno
,
M. R.
,
da Cunha
,
J. P. A. R.
, and
de Santana
,
D. G.
, “
Assessment of Spray Drift from Pesticide Applications in Soybean Crops
,”
Biosyst. Eng.
, Vol.
154
,
2017
, pp. 35–45.
17.
Johnson
,
A. K.
,
Roeth
,
F. W.
,
Martin
,
A. R.
, and
Klein
,
R. N.
, “
Glyphosate Spray Drift Management with Drift-Reducing Nozzles and Adjuvants
,”
Weed Technol.
, Vol.
20
, No.
4
,
2006
, pp. 893–897.
18.
Nuyttens
,
D.
,
De Schampheleire
,
M.
,
Verboven
,
P.
,
Brusselman
,
E.
, and
Dekeyser
,
D.
, “
Droplet Size and Velocity Characteristics of Agricultural Sprays
,”
Trans. ASABE
, Vol.
52
, No.
5
,
2009
, pp. 1471–1480.
19.
May
,
K. R.
and
Clifford
,
R.
, “
The Impaction of Aerosol Particles on Cylinders, Spheres, Ribbons and Discs
,”
Ann. Occup. Hyg.
, Vol.
10
, No.
2
,
1967
, pp. 83–95.
20.
Spillman
,
J. J.
, “
Spray Impaction, Retention, and Adhesion—An Introduction to Basic Characteristics
,”
Pestic. Sci.
, Vol.
15
, No.
2
,
1984
, pp. 97–106.
21.
De Cock
,
N.
,
Massinon
,
M.
,
Salah
,
S. O. T.
, and
Lebeau
,
F.
, “
Investigation on Optimal Spray Properties for Ground Based Agricultural Applications Using Deposition and Retention Models
,”
Biosyst. Eng.
, Vol.
162
,
2017
, pp. 99–111.
22.
Lake
,
J. R.
, “
The Effect of Drop Size and Velocity on the Performance of Agricultural Sprays
,”
Pestic. Sci.
, Vol.
8
, No.
5
,
1977
, pp. 515–520.
23.
Ennis
,
W. B.
and
Williamson
,
R. E.
, “
Influence of Droplet Size on Effectiveness of Low-Volume Herbicidal Sprays
,”
Weeds
, Vol.
11
, No.
1
,
1963
, pp. 67–72.
24.
Knoche
,
M.
, “
Effect of Droplet Size and Carrier Volume on Performance of Foliage-Applied Herbicides
,”
Crop Protect.
, Vol.
13
, No.
3
,
1994
, pp. 163–178.
25.
Creech
,
C. F.
,
Moraes
,
J. G.
,
Henry
,
R. S.
,
Luck
,
J. D.
, and
Kruger
,
G. R.
, “
The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil
,”
Weed Technol.
, Vol.
30
, No.
2
,
2016
, pp. 573–586.
26.
Ramsdale
,
B. K.
and
Messersmith
,
C. G.
, “
Drift-Reducing Nozzle Effects on Herbicide Performance
,”
Weed Technol.
, Vol.
15
, No.
3
,
2001
, pp. 453–460.
27.
Ramsdale
,
B. K.
and
Messersmith
,
C. G.
, “
Nozzle, Spray Volume, and Adjuvant Effects on Carfentrazone and Imazamox Efficacy
,”
Weed Technol.
, Vol.
15
, No.
3
,
2001
, pp. 485–491.
28.
Etheridge
,
R. E.
,
Hart
,
W. E.
,
Hayes
,
R. M.
, and
Mueller
,
T. C.
, “
Effect of Venturi-Type Nozzles and Application Volume on Postemergence Herbicide Efficacy
,”
Weed Technol.
, Vol.
15
, No.
1
,
2001
, pp. 75–80.
29.
Wolf
,
T. M.
, “
Optimising Herbicide Performance—Biological Consequences of Using Low-Drift Nozzles
,”
Int. Adv. Pestic. Appl.
, Vol.
66
,
2002
, pp. 79–86.
30.
Etheridge
,
R. E.
,
Womac
,
A. R.
, and
Mueller
,
T. C.
, “
Characterization of the Spray Droplet Spectra and Patterns of Four Venturi-Type Drift Reduction Nozzles
,”
Weed Technol.
, Vol.
13
, No.
4
,
1999
, pp. 765–770.
31.
Henry
,
R. S.
,
Kruger
,
G. R.
,
Fritz
,
B. K.
,
Hoffman
,
W. C.
, and
Bagley
,
W. E.
, “
Measuring the Effect of Spray Plume Angle on the Accuracy of Droplet Size Data
,”
Pesticide Formulation and Delivery Systems: 33rd Volume, Sustainability: Contributions from Formulation Technology, ASTM STP1569
,
Sesa
C.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
2014
, pp. 129–138.
32.
Fritz
,
B. K.
,
Hoffman
,
W. C.
,
Bagley
,
W. E.
,
Kruger
,
G. R.
,
Czaczyk
,
Z.
, and
Henry
,
R. S.
, “
Measuring Droplet Size of Agricultural Spray Nozzles—Measurement Distance and Airspeed Effects
,”
Atom. Spray
, Vol.
24
, No.
9
,
2014
, pp. 747–760.
33.
Creech
,
C. F.
,
Henry
,
R. S.
,
Werle
,
R.
,
Sandell
,
L. D.
,
Hewitt
,
A. J.
, and
Kruger
,
G. R.
, “
Performance of Postemergence Herbicides Applied at Different Carrier Volume Rates
,”
Weed Technol.
, Vol.
29
, No.
3
,
2015
, pp. 611–624.
34.
Stroup
,
W. W.
,
Generalized Linear Mixed Models: Modern Concepts, Methods and Applications
,
CRC Press
,
Boca Raton, FL
,
2013
.
35.
ASABE
, “
Spray Nozzle Classification by Droplet Spectra
,” ANSI/ASAE Standards S572.1,
St. Joseph, MI
,
2009
.
36.
Fritz
,
B. K.
,
Hoffman
,
W. C.
,
Kruger
,
G. R.
,
Henry
,
R. S.
,
Hewitt
,
A.
, and
Czaczyk
,
Z.
, “
Comparison of Drop Size Data from Ground and Aerial Application Nozzles at Three Testing Laboratories
,”
Atom. Spray
, Vol.
24
, No.
2
,
2014
, pp. 181–192.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal