Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Railroad Ballast Testing and Properties
By
Timothy D. Stark
Timothy D. Stark
Symposium Chairperson and STP Editor
1
University of Illinois at Urbana-Champaign
,
Urbana, IL,
US
Search for other works by this author on:
Robert H. Swan, Jr. Jr.
Robert H. Swan, Jr. Jr.
Symposium Chairperson and STP Editor
2
Drexel University
,
Philadelphia, PA,
US
Search for other works by this author on:
Richard Szecsy
Richard Szecsy
Symposium Chairperson and STP Editor
3
Texas Aggregates & Concrete Association
,
Round Rock, TX,
US
Search for other works by this author on:
ISBN:
978-0-8031-7655-3
No. of Pages:
246
Publisher:
ASTM International
Publication date:
2018

This paper describes salient features of a set of large-scale ballast testing equipment developed at the University of Wollongong, Australia, and how the test results and research outcomes have contributed to transforming tracks in the Australian heavy haul and commuter networks, particularly with regards to the strength, deformation, and degradation of ballast. Ideally, ballast assemblies should be tested in prototype scale under actual loading conditions. This is because a reduction in particle sizes for testing in smaller equipment can reduce the internal angle of friction (shearing resistance) of the granular assembly in a macro sense, and the angularity of the particles in a micro sense, and hence the volumetric changes during the shearing process. In response to the worldwide lack of proper test facilities for ballast, the University of Wollongong has, since the early 1990s, designed and built a number of large-scale process simulation triaxial testing rigs. They are all custom made to minimize any boundary effects and also to evaluate the deformation and degradation of ballast, particularly the size, shape, and origin of aggregates used as ballast in Australian tracks. This triaxial process simulation equipment was originally used to characterize the behavior of coarse aggregate used for state railway standards for monotonic loading, but since then it has been fitted with dynamic actuators to simulate actual track conditions involving the true cyclic loading nature while also capturing the wheel-rail dynamics that correspond to high-speed commuter rail and fast heavy-haul operations. These tests invariably demonstrated completely different stress–strain and volumetric characteristics of ballast compared to conventional static or monotonic testing of the same test specimens.

1.
Selig
,
E. T.
and
Waters
,
J. M.
,
Track Geotechnology and Substructure Management
,
Thomas Telford
,
London
,
1994
.
2.
Indraratna
,
B.
,
Salim
,
W.
, and
Rujikiatkamjorn
,
C.
,
Advanced Rail Geotechnology—Ballasted Track
,
CRC Press
,
London
,
2011
.
3.
Tutumluer
,
E.
,
Huang
,
H.
, and
Bian
,
X.
, “
Geogrid-Aggregate Interlock Mechanism Investigated through Aggregate Imaging-Based Discrete Element Modeling Approach
,”
Int. J. Geomech.
, Vol.
12
, No.
4
,
2012
, pp. 391–398.
4.
McDowell
,
G. R.
,
Lim
,
W. L.
,
Collop
,
A. C.
,
Armitage
,
R.
, and
Thom
,
N. H.
, “
Comparison of Ballast Index Tests for Railway Trackbeds
,”
P.I. Civil. Eng.—Geotec
., Vol.
157
, No.
3
,
2004
, pp. 151–161.
5.
Tutumluer
,
E.
,
Dombrow
,
W.
, and
Huang
,
H.
, “
Laboratory Characterization of Coal Dust Fouled Ballast Behavior
,” presented at the AREMA 2008 Annual Conference & Exposition,
Salt Lake City, UT
, September 21–24,
2008
,
AREMA Press
,
Chicago, IL
.
6.
Ngo
,
N. T.
,
Indraratna
,
B.
, and
Rujikiatkamjorn
,
C.
, “
DEM Simulation of the Behaviour of Geogrid Stabilised Ballast Fouled with Coal
,”
Comput. Geotech.
, Vol.
55
,
2014
, pp. 224–231.
7.
Raymond
,
G. P.
and
Diyaljee
,
V. A.
, “
Railroad Ballast Sizing and Grading
,”
J. Geotech. Eng.
, Vol.
105
, No.
5
,
1979
, pp. 676–681.
8.
Ngo
,
N. T.
,
Indraratna
,
B.
, and
Rujikiatkamjorn
,
C.
, “
Micromechanics-Based Investigation of Fouled Ballast Using Large-Scale Triaxial Tests and Discrete Element Modeling
,”
J. Geotech. Geoenviron. Eng.
, Vol.
143
, No.
2
,
2017
, pp. 04016089-1-16.
9.
Marsal
,
R. J.
, “
Large Scale Testing of Rockfill Materials
,”
J. Soil Mech. Found. Div.
, Vol.
93
, No.
6
,
1967
, pp. 383–388.
10.
Marachi
,
N. D.
,
Chan
,
C. K.
, and
Seed
,
H. B.
, “
Evaluation of Properties of Rockfill Materials
,”
J. Soil Mech. Found. Div.
, Vol.
98
, No.
1
,
1972
, pp. 95–115.
11.
Charles
,
J. A.
and
Watts
,
K. S.
, “
The Influence of Confining Pressure on the Shear Strength of Compacted Rockfill
,”
Géotechnique
, Vol.
30
, No.
4
,
1980
, pp. 353–367.
12.
Anderson
,
W. F.
and
Fair
,
P.
, “
Behavior of Railroad Ballast under Monotonic and Cyclic Loading
,”
J. Geotech. Geoenviron. Eng.
, Vol.
134
, No.
3
,
2008
, pp. 316–327.
13.
Indraratna
,
B.
,
Ngo
,
N. T.
, and
Rujikiatkamjorn
,
C.
, “
Behavior of Geogrid-Reinforced Ballast under Various Levels of Fouling
,”
Geotext. Geomembranes
, Vol.
29
, No.
3
,
2011
, pp. 313–322.
14.
Indraratna
,
B.
,
Ionescu
,
D.
, and
Christie
,
H.
, “
Shear Behavior of Railway Ballast Based on Large-Scale Triaxial Tests
,”
J. Geotech. Geoenviron. Eng.
, Vol.
124
, No.
5
,
1998
, pp. 439–449.
15.
Marsal
,
R. J.
, “
Mechanical Properties of Rockfill
,”
Embankment Dam Engineering
,
Hirschfeld
R. C.
and
Poulos
S. J.
, Eds.,
Wiley
,
New York
,
1973
, pp. 109–200.
16.
Ionescu
,
D.
, “
Evaluation of the Engineering Behavior of Railway Ballast
,” Ph.D. thesis,
University of Wollongong
, NSW, Australia,
2004
.
17.
Lackenby
,
J.
,
Indraratna
,
B.
,
McDowell
,
G. R.
, and
Christie
,
D.
, “
Effect of Confining Pressure on Ballast Degradation and Deformation under Cyclic Triaxial Loading
,”
Géotechnique
, Vol.
57
, No.
6
,
2007
, pp. 527–536.
18.
Indraratna
,
B.
,
Lackenby
,
J.
, and
Christie
,
D.
, “
Effect of Confining Pressure on the Degradation of Ballast under Cyclic Loading
,”
Géotechnique
, Vol.
55
, No.
4
,
2005
, pp. 325–328.
19.
Tennakoon
,
N.
,
Indraratna
,
B.
,
Rujikiatkamjorn
,
C.
,
Nimbalkar
,
S.
, and
Neville
,
T.
, “
The Role of Ballast-Fouling Characteristics on the Drainage Capacity of Rail Substructure
,”
Geotech. Test. J.
, Vol.
35
, No.
4
,
2012
, pp. 1–11.
20.
Indraratna
,
B.
,
Ngo
,
N. T.
, and
Rujikiatkamjorn
,
C.
, “
Deformation of Coal Fouled Ballast Stabilized with Geogrid under Cyclic Load
,”
J. Geotech. Geoenviron. Eng.
, Vol.
139
, No.
8
,
2013
, pp. 1275–1289.
21.
Rujikiatkamjorn
,
C.
,
Indraratna
,
B.
,
Ngo
,
N. T.
, and
Coop
,
M.
, “
A Laboratory Study of Railway Ballast Behavior under Various Fouling Degree
,”
Proceedings of the Geosynthetics Asia 2012: Fifth Asian Regional Conference on Geosynthetics
,
Bangkok, Thailand
, December 13–15,
2012
, pp. 507–514.
22.
Biabani
,
M. M.
,
Indraratna
,
B.
, and
Ngo
,
N.T.
, “
Modelling of Geocell-Reinforced Subballast Subjected to Cyclic Loading
,”
Geotext. Geomembranes
, Vol.
44
, No.
4
,
2016
, pp. 489–503.
23.
Ngo
,
N. T.
,
Indraratna
,
B.
, and
Rujikiatkamjorn
,
C.
, “
Simulation Ballasted Track Behavior: Numerical Treatment and Field Application
,”
Int. J. Geomech.
, Vol.
17
, No.
6
,
2017
, pp. 04016130-1-12.
24.
Indraratna
,
B.
,
Tennakoon
,
N.
,
Nimbalkar
,
S.
, and
Rujikiatkamjorn
,
C.
, “
Behavior of Clay-Fouled Ballast under Drained Triaxial Testing
,”
Géotechnique
, Vol.
63
, No.
5
,
2013
, pp. 410–419.
25.
Biabani
,
M. M.
,
Ngo
,
N. T.
, and
Indraratna
,
B.
, “
Performance Evaluation of Railway Subballast Stabilized with Geocell Based on Pull-Out Testing
,”
Geotext. Geomembranes
, Vol.
44
, No.
4
,
2016
, pp. 579–591.
26.
Remennikov
,
A. M.
and
Kaewunruen
,
S.
, “
Dynamic Crack Propagation in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads
,”
J. Struct. Eng.—ASCE
, Vol.
136
, No.
6
,
2010
, pp. 749–754.
27.
Kaewunruen
,
S.
and
Remennikov
,
A. M.
, “
Progressive Failure of Prestressed Concrete Sleepers under Multiple High-Intensity Impact Loads
,”
Eng. Struct.
, Vol.
31
, No.
10
,
2009
, pp. 2460–2473.
28.
Ngo
,
N.T.
,
Indraratna
,
B.
, and
Rujikiatkamjorn
,
C.
, “
Modelling Geogrid-Reinforced Railway Ballast Using the Discrete Element Method
,”
Transport. Geotech.
, Vol.
8
,
2016
, pp. 86–102.
29.
AS2758.7-1996,
Aggregates and Rock for Engineering Purposes; Part 7: Railway Ballast
,
Standards Australia
,
Sydney, NSW, Australia
,
2009
.
30.
Chrismer
,
S. M.
, “
Considerations of Factors Affecting Ballast Performance
,” American Railway Engineering Association Bulletin, AAR Research and Test Department Report No. WP-110,
AREA
, Chicago,
1985
, pp. 118–150.
31.
Indraratna
,
B.
,
Wijewardena
,
L. S. S.
, and
Balasubramaniam
,
A. S.
, “
Large-Scale Testing of Greywacke Rockfill
,”
Géotechnique
, Vol.
43
, No.
1
,
1993
, pp. 37–51.
32.
Ramamurthy
,
T.
, “
Shear Strength Response of Some Geological Materials in Triaxial Compression
,”
Int. J. Rock Mech. Min.
, Vol.
38
, No.
5
,
2001
, pp. 683–697.
33.
Sun
,
Q. D.
,
Indraratna
,
B.
, and
Nimbalkar
,
S.
, “
Deformation and Degradation Mechanisms of Railway Ballast under High Frequency Cyclic Loading
,”
J. Geotech. Geoenviron. Eng.
, Vol.
142
, No.
1
,
2016
, pp. 04015056-1-12.
34.
Ngo
,
N. T.
,
Indraratna
,
B.
,
Rujikiatkamjorn
,
C.
, and
Biabani
,
M. M.
, “
Experimental and Discrete Element Modeling of Geocell-Stabilised Subballast Subjected to Cyclic Loading
,”
J. Geotech. Geoenviron. Eng.
, Vol.
142
, No.
4
,
2016
, pp. 04015100.
35.
Cho
,
G.-C.
,
Dodds
,
J.
, and
Santamarina
,
J. C.
, “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands
,”
J. Geotech. Geoenviron. Eng
., Vol.
132
, No.
5
,
2006
, pp. 591–602.
36.
Le Pen
,
L.
,
Powrie
,
W.
,
Zervos
,
A.
,
Ahmed
,
S.
, and
Aingaran
,
S.
, “
Dependence of Shape on Particle Size for a Crushed Rock Railway Ballast
,”
Granul. Matter
, Vol.
15
, No.
6
,
2013
, pp. 849–861.
37.
Indraratna
,
B.
,
Sun
,
Q. D.
, and
Nimbalkar
,
S.
, “
Observed and Predicted Behavior of Rail Ballast under Monotonic Loading Capturing Particle Breakage
,”
Can. Geotech. J
., Vol.
52
, No.
1
,
2014
, pp. 73–86.
38.
Moaveni
,
M.
,
Qian
,
Y.
,
Mishra
,
D.
, and
Pombo
,
J.
, “
Investigation of Ballast Degradation and Fouling Trends Using Image Analysis
,”
Proceedings of Second International Conference on Railway Technology
,
Ajaccio, Corsica, France
, April 8–11,
2014
,
Civil-Comp Press
,
Stirlingshire, UK
,
2014
, pp. 1–10.
39.
Altuhafi
,
F.
,
O'Sullivan
,
C.
, and
Cavarretta
,
I.
, “
Analysis of an Image-Based Method to Quantify the Size and Shape of Sand Particles
,”
J. Geotech. Geoenviron. Eng
., Vol.
139
, No.
8
,
2013
, pp. 1290–1307.
40.
Sun
,
Y.
,
Indraratna
,
B.
, and
Nimbalkar
,
S.
, “
Three-Dimensional Characterisation of Particle Size and Shape for Ballast
,”
Géotechnique
, Vol.
4
, No.
3
,
2014
, pp. 197–202.
41.
O'Sullivan
,
C.
,
Bray
,
J. D.
, and
Riemer
,
M. F.
, “
Influence of Particle Shape and Surface Friction Variability on Response of Rod-Shaped Particulate Media
,”
J. Eng. Mech
., Vol.
128
, No.
11
,
2002
, pp. 1182–1192.
42.
Hardin
,
B. O.
, “
Crushing of Soil Particles
,”
J. Geotech. Eng.
, Vol.
111
, No.
10
,
1985
, pp. 1177–1192.
43.
Lu
,
M.
and
McDowell
,
G. R.
, “
Discrete Element Modelling of Ballast Abrasion
,”
Géotechnique
, Vol.
56
, No.
9
,
2006
, pp. 651–655.
44.
Indraratna
,
B.
,
Ngo
,
N. T.
,
Rujikiatkamjorn
,
C.
, and
Vinod
,
J.
, “
Behavior of Fresh and Fouled Railway Ballast Subjected to Direct Shear Testing—A Discrete Element Simulation
,”
Int. J. Geomech.
, Vol.
14
, No.
1
,
2014
, pp. 34–44.
45.
Feldman
,
F.
and
Nissen
,
D.
, “
Alternative Testing Method for the Measurement of Ballast Fouling
,” presented at
CORE 2002, Cost Efficient Railways through Engineering, Conference on Railway Engineering
,
Wollongong, New South Wales
, November 10–13,
2002
.
46.
Dombrow
,
W.
,
Huang
,
H.
, and
Tutumluer
,
E.
, “
Comparison of Coal Dust Fouled Railroad Ballast Behavior—Granite vs. Limestone
,”
Bearing Capacity of Roads, Railways and Airfields, Proceedings of the 8th International Conference (BCR2A'09)
,
Champaign, IL
, June 29–July 2,
2009
,
CRC Press
,
Boca Raton, FL
,
2009
.
47.
Ngo
,
N. T.
,
Indraratna
,
B.
, and
Rujikiatkamjorn
,
C.
, “
Stabilisation of Track Substructure with Geo-Inclusions—Experimental Evidence and DEM Simulation
,”
Int. J. Rail Transp.
, Vol.
5
, No.
2
,
2017
, pp. 63–86.
48.
Lade
,
P. V.
,
Yamamuro
,
J. A.
, and
Bopp
,
P. A.
, “
Significance of Particle Crushing in Granular Materials
,”
J. Geotech. Eng.
, Vol.
122
, No.
4
,
1996
, pp. 309–316.
49.
Indraratna
,
B.
,
Nimbalkar
,
S.
,
Ngo
,
N. T.
, and
Neville
,
T.
, “
Performance Improvement of Rail Track Substructure Using Artificial Inclusions—Experimental and Numerical Studies
,”
Transport. Geotech.
, Vol.
8
,
2016
, pp. 69–85.
50.
Nimbalkar
,
S.
,
Indraratna
,
B.
,
Dash
,
S. K.
, and
Christie
,
D.
, “
Improved Performance of Railway Ballast under Impact Loads Using Shock Mats
,”
J. Geotech. Geoenviron. Eng.
, Vol.
138
, No.
3
,
2012
, pp. 281–294.
51.
Jenkins
,
H. M.
,
Stephenson
,
J. E.
,
Clayton
,
G. A.
,
Moorland
,
J. W.
, and
Lyon
,
D.
, “
The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces
,”
Railw. Eng. J.
, Vol.
3
, No.
1
,
1974
, pp. 2–16.
52.
Nimbalkar
,
S.
and
Indraratna
,
B.
, “
Improved Performance of Ballasted Rail Track Using Geosynthetics and Rubber Shockmat
,”
J. Geotech. Geoenviron. Eng.
, Vol.
142
, No.
8
,
2016
, pp. 04016031-1-13.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal