Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Beyond the Implant: Retrieval Analysis Methods for Implant Surveillance
By
William M. Mihalko
William M. Mihalko
Symposium Chair and STP Editor
1
Campbell Clinic-University of Tennessee
,
Memphis, TN,
US
Search for other works by this author on:
Jack E. Lemons
Jack E. Lemons
Symposium Chair and STP Editor
2
University of Alabama at Birmingham
,
Birmingham, AL,
US
Search for other works by this author on:
A. Seth Greenwald
A. Seth Greenwald
Symposium Chair and STP Editor
3
Orthopaedic Research Laboratories
,
Cleveland, OH,
US
Search for other works by this author on:
Steven M. Kurtz
Steven M. Kurtz
Symposium Chair and STP Editor
4
Exponent, Inc.
,
Philadelphia, PA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7657-7
No. of Pages:
317
Publisher:
ASTM International
Publication date:
2018

Analysis of retrieved implants is a multistep process that can be approached in a variety of ways. To researchers, this analysis is vital to assessing how the implant functioned after surgery. Traditionally, this involves examination of components by one or several experts who then give feedback on the severity of observable damage. Engineering approaches attempt to minimize subjectivity by introducing standardized techniques that can quantify damage, such as microcomputed tomography analysis of retrieved polyethylene components. Methods such as these provide an objective way to measure damage and can be used in addition to subjective techniques such as visual inspection. This chapter will entail a review of the available processes that can be utilized to properly analyze how and why a polymer insert in a total knee arthroplasty implant failed.

1.
Hallab
,
N. J.
, “
Biologic Aspects of Implant Wear
,”
ASM Handbook, Volume 23: Materials for Medical Devices
,
Narayan
R. J.
, Ed.,
ASM International
,
Materials Park, OH
,
2012
, pp. 157–168.
2.
Hirakawa
,
K.
,
Bauer
,
T. W.
,
Stulberg
,
B. N.
,
Wilde
,
A. H.
, and
Borden
,
L. S.
, “
Characterization of Debris Adjacent to Failed Knee Implants of 3 Different Designs
,”
Clin. Orthop. Relat. Res.
, Vol.
331
,
1996
, pp. 151–158.
3.
Naudie
,
D. D.
,
Ammeen
,
D. J.
,
Engh
,
G. A.
, and
Rorabeck
,
C. H.
, “
Wear and Osteolysis Around Total Knee Arthroplasty
,”
J. Am. Acad. Orthop. Sur.
, Vol.
15
, No.
1
,
2007
, pp. 53–64.
4.
Hallab
,
N. J.
and
Jacobs
,
J. J.
, “
Biologic Effects of Implant Debris
,”
Bull. NYU Hosp. Jt. Dis.
, Vol.
67
, No.
2
,
2009
, pp. 182–188.
5.
Green
,
T.
,
Fisher
,
J.
, Stone, M,
Wroblewski
,
B. M.
, and
Ingham
,
E.
, “
Polyethylene Particles of a ‘Critical Size’ Are Necessary for the Induction of Cytokines by Macrophages in vitro
,”
Biomaterials
, Vol.
19
, No.
24
,
1998
, pp. 2297–2302.
6.
Wasielewski
,
R. C.
,
Parks
,
N.
,
Williams
,
I.
,
Surprenant
,
H.
,
Collier
,
J. P.
, and
Engh
,
G.
, “
Tibial Insert Undersurface as a Contributing Source of Polyethylene Wear Debris
,”
Clin. Orthop. Relat. Res.
, Vol.
345
,
1997
, pp. 53–59.
7.
Conditt
,
M. A.
,
Thompson
,
M. T.
,
Usrey
,
M. M.
,
Ismaily
,
S. K.
, and
Noble
,
P. C.
, “
Backside Wear of Polyethylene Tibial Inserts: Mechanism and Magnitude of Material Loss
,”
J. Bone Joint Surg. Am.
, Vol.
87
, No.
2
,
2005
, pp. 326–331.
8.
White
,
S. E.
,
Paxson
,
R. D.
,
Tanner
,
M. G.
, and
Whiteside
,
L. A.
, “
Effects of Sterilization on Wear in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
331
,
1996
, pp. 164–171.
9.
Bell
,
C. J.
,
Walker
,
P. S.
,
Abeysundera
,
M. R.
,
Simmons
,
J. M. H.
,
King
,
P. M.
, and
Blunn
,
G. W.
, “
Effect of Oxidation on Delamination of Ultrahigh-Molecular-Weight Polyethylene Tibial Components
,”
J. Arthroplasty
, Vol.
13
, No.
3
,
1998
, pp. 280–290.
10.
Kurtz
,
S. M.
,
Muratoglu
,
O. K.
,
Evans
,
M.
, and
Edidin
,
A. A.
, “
Advances in the Processing, Sterilization, and Crosslinking of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty
,”
Biomaterials
, Vol.
20
, No.
18
,
1999
, pp. 1659–1688.
11.
Baxter
,
R. M.
,
Steinbeck
,
M. J.
,
Tipper
,
J. L.
,
Parvizi
,
J.
,
Marcolongo
,
M.
, and
Kurtz
,
S. M.
, “
Comparison of Periprosthetic Tissue Digestion Methods for Ultra‐High Molecular Weight Polyethylene Wear Debris Extraction
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
91
, No.
1
,
2009
, pp. 409–418.
12.
Howling
,
G. I.
,
Barnett
,
P. I.
,
Tipper
,
J. L.
,
Stone
,
M. H.
,
Fisher
,
J.
, and
Ingham
,
E.
, “
Quantitative Characterization of Polyethylene Debris Isolated from Periprosthetic Tissue in Early Failure Knee Implants and Early and Late Failure Charnley Hip Implants
,”
J. Biomed. Mater. Res.
, Vol.
58
, No.
4
,
2001
, pp. 415–420.
13.
Campbell
,
P.
,
Ma
,
S.
,
Yeom
,
B.
,
McKellop
,
H.
,
Schmalzried
,
T. P.
, and
Amstutz
,
H. C.
, “
Isolation of Predominantly Submicron‐Sized UHMWPE Wear Particles from Periprosthetic Tissues
,”
J. Biomed. Mater. Res.
, Vol.
29
, No.
1
,
1995
, pp. 127–131.
14.
Wolfarth
,
D. L.
,
Han
,
D. W.
,
Bushar
,
G.
, and
Parks
,
N. L.
, “
Separation and Characterization of Polyethylene Wear Debris from Synovial Fluid and Tissue Samples of Revised Knee Replacements
,”
J. Biomed. Mater. Res.
, Vol.
34
, No.
1
,
1997
, pp. 57–61.https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-4636%28199701%2934%3A1%3C57%3A%3AAID-JBM8%3E3.0.CO%3B2-M
15.
Schmalzried
,
T. P.
,
Jasty
,
M.
,
Rosenberg
,
A.
, and
Harris
,
W. H.
, “
Polyethylene Wear Debris and Tissue Reactions in Knee as Compared to Hip Replacement Prostheses
,”
J. Appl. Biomater.
, Vol.
5
, No.
3
,
1994
, pp. 185–190.
16.
Wilkinson
,
J. M.
,
Hamer
,
A. J.
,
Stockley
,
I.
, and
Eastell
,
R.
, “
Polyethylene Wear Rate and Osteolysis: Critical Threshold versus Continuous Dose‐Response Relationship
,”
J. Orthop. Res.
, Vol.
23
, No.
3
,
2005
, pp. 520–525.
17.
Green
,
T. R.
,
Fisher
,
J.
,
Matthews
,
J. B.
,
Stone
,
M. H.
, and
Ingham
,
E.
, “
Effect of Size and Dose on Bone Resorption Activity of Macrophages by In Vitro Clinically Relevant Ultra High Molecular Weight Polyethylene Particles
,”
J. Biomed. Mater. Res.
, Vol.
53
, No.
5
,
2000
, pp. 490–497.https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4636%28200009%2953%3A5%3C490%3A%3AAID-JBM7%3E3.0.CO%3B2-7
18.
ASTM F1877,
Standard Practice for Characterization of Particles
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
19.
Hood
,
R. W.
,
Wright
,
T. M.
, and
Burstein
,
A. H.
, “
Retrieval Analysis of Total Knee Prostheses: A Method and Its Application to 48 Total Condylar Prostheses
,”
J. Biomed. Mater. Res.
, Vol.
17
, No.
5
,
1983
, pp. 829–842.
20.
Kilgus
,
D. J.
,
Moreland
,
J. R.
,
Finerman
,
G. A.
,
Funahashi
,
T. T.
, and
Tipton
,
J. S.
, “
Catastrophic Wear of Tibial Polyethylene Inserts
,”
Clin. Orthop. Relat. Res.
, Vol.
273
,
1991
, pp. 223–231.
21.
Brandt
,
J.-M.
,
Hardon
,
C. M.
,
Harvey
,
E. P
,
McCalden
,
R. W.
, and
Medley
,
J. B.
, “
Semi-Quantitative Assessment Methods for Backside Polyethylene Damage in Modular Total Knee Replacements
,”
Tribol. Int.
, Vol.
49
,
2012
, pp. 96–102.
22.
Wasielewski
,
R. C.
,
Galante
,
J. O.
,
Leighty
,
R. M.
,
Natarajan
,
R. N.
, and
Rosenberg
,
A. G.
, “
Wear Patterns on Retrieved Polyethylene Tibial Inserts and Their Relationship to Technical Considerations during Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
299
,
1994
, pp. 31–43.
23.
Grochowsky
,
J.
,
Alaways
,
L. W.
,
Siskey
,
R.
,
Most
,
E.
, and
Kurtz
,
S. M.
, “
Digital Photogrammetry for Quantitative Wear Analysis of Retrieved TKA Components
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
79
, No.
2
,
2006
, pp. 263–267.
24.
Bartel
,
D.
,
Rawlinson
,
J. J.
,
Burstein
,
A. H.
,
Ranawat
,
C. S.
, and
Flynn
,
W. F.
, Jr.
, “
Stresses in Polyethylene Components of Contemporary Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
, Vol.
317
,
1995
, pp. 76–82.
25.
Teeter
,
M. G.
,
Naudie
,
D. D.
,
McErlain
,
D. D.
,
Brandt
,
J. M.
,
Yuan
,
X.
,
Macdonald
,
S. J.
, and
Holdsworth
,
D. W.
, “
In Vitro Quantification of Wear in Tibial Inserts using Microcomputed Tomography
,”
Clin. Orthop. Relat. Res.
, Vol.
469
, No.
1
, pp. 107–112.
26.
Bowden
,
A.
,
Kurtz
,
S.
, and
Edidin
,
A.
, “
Validation of a Micro‐CT Technique for Measuring Volumetric Wear in Retrieved Acetabular Liners
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
75
, No.
1
,
2005
, pp. 205–209.
27.
Knowlton
,
C. B.
and
Wimmer
,
M. A.
, “
An Autonomous Mathematical Reconstruction to Effectively Measure Volume Loss on Retrieved Polyethylene Tibial Inserts
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
101
, No.
3
,
2013
, pp. 449–457.
28.
Sharkey
,
P. F.
,
Hozack
,
W. J.
,
Rothman
,
R. H.
,
Shastri
,
S.
, and
Jacoby
,
S. M.
, “
Insall Award Paper. Why Are Total Knee Arthroplasties Failing Today?
Clin. Orthop. Relat. Res.
, Vol.
404
,
2002
, pp. 7–13.
29.
Hetaimish
,
B. M.
,
Khan
,
M. M.
,
Simunovic
,
N.
,
Al-Harbi
,
H. H.
,
Bhandari
,
M.
, and
Zatzal
,
P. K.
, “
Meta-Analysis of Navigation vs Conventional Total Knee Arthroplasty
,”
J. Arthroplasty
, Vol.
27
, No.
6
,
2012
, pp. 1177–1182.
30.
Mason
,
J. B.
,
Fehring
,
T. K.
,
Estok
,
R.
,
Banel
,
D.
, and
Fahrbach
,
K.
, “
Meta-Analysis of Alignment Outcomes in Computer-Assisted Total Knee Arthroplasty Surgery
,”
J. Arthroplasty
, Vol.
22
, No.
8
,
2007
, pp. 1097–1106.
31.
Heegaard
,
J.
,
Leyvraz
,
P.
, and
Hovey
,
C.
, “
A Computer Model to Simulate Patellar Biomechanics Following Total Knee Replacement: The Effects of Femoral Component Alignment
,”
Clin. Biomech.
, Vol.
16
, No.
5
,
2001
, pp. 415–423.
32.
Rhoads
,
D. D.
,
Noble
,
P. C.
,
Reuben
,
J. D.
,
Mahoney
,
O. M.
, and
Tullos
,
H. S.
, “
The Effect of Femoral Component Position on Patellar Tracking after Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
260
,
1990
, pp. 43–51.
33.
Berger
,
R. A.
and
Crossett
,
L. S.
, “
Determining the Rotation of the Femoral and Tibial Components in Total Knee Arthroplasty: A Computer Tomography Technique
,”
Oper. Tech. Ortho.
, Vol.
8
, No.,
3
,
1998
, pp. 128–133.
34.
Jazrawi
,
L. M.
,
Birdzell
,
L.
,
Kummer
,
F. J.
, and
Di Cesare
,
P. E.
, “
The Accuracy of Computed Tomography for Determining Femoral and Tibial Total Knee Arthroplasty Component Rotation
,”
J. Arthroplasty
, Vol.
15
, No.
6
,
2000
, pp. 761–766.
35.
Winemaker
,
M. J.
, “
Perfect Balance in Total Knee Arthroplasty: The Elusive Compromise
,”
J. Arthroplasty
, Vol.
17
, No.
1
,
2002
, pp. 2–10.
36.
Nicoll
,
D.
and
Rowley
,
D. I.
, “
Internal Rotational Error of the Tibial Component Is a Major Cause of Pain after Total Knee Replacement
,”
J. Bone Joint Surg. Br.
, Vol.
92
, No.
9
,
2010
, pp. 1238–1244.
37.
Aglietti
,
P.
,
Sensi
,
L.
,
Cuomo
,
P.
, and
Ciardullo
,
A.
, “
Rotational Position of Femoral and Tibial Components in TKA Using the Femoral Transepicondylar Axis
,”
Clin. Orthop. Relat. Res.
, Vol.
466
, No.
11
,
2008
, pp. 2751–2755.
38.
Eckhoff
,
D. G.
,
Metzger
,
R. G.
, and
Vandewalle
,
M. V.
, “
Malrotation Associated with Implant Alignment Technique in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
321
,
1995
, pp. 28–31.
39.
Bell
,
S. W.
,
Young
,
P.
,
Drury
,
C.
,
Smith
,
J.
,
Anthony
,
I.
,
Jones
,
B.
,
Blyth
,
M.
, and
McLean
,
A.
, “
Component Rotational Alignment in Unexplained Painful Primary Total Knee Arthroplasty
,”
Knee
, Vol.
21
, No.
1
,
2014
, pp. 272–277.
40.
Mihalko
,
W. M.
and
Williams
,
J. L.
, “
Computer Modeling to Predict Effects of Implant Malpositioning during TKA
,”
Orthopedics
, Vol.
33
,
Suppl. 10
,
2010
, pp. 71–75.
41.
Nagamine
,
R.
,
White
,
S. E.
,
McCarthy
,
D. S.
, and
Whiteside
,
L. A.
, “
Effect of Rotational Malposition of the Femoral Component on Knee Stability Kinematics after Total Knee Arthroplasty
,”
J. Arthroplasty
, Vol.
10
, No.
3
,
1995
, pp. 265–270.
42.
Nagamine
,
R.
,
Whiteside
,
L. A.
,
Otani
,
T.
,
White
,
S. E.
, and
McCarthy
,
D. S.
, “
Effect of Medial Displacement of the Tibial Tubercle on Patellar Position after Rotational Malposition of the Femoral Component in Total Knee Arthroplasty
,”
J. Arthroplasty
, Vol.
11
, No.
1
,
1996
, pp. 104–110.
43.
Takahashi
,
T.
,
Wada
,
Y.
, and
Yamamoto
,
H.
, “
Soft-Tissue Balancing with Pressure Distribution during Total Knee Arthroplasty
,”
J. Bone Joint Surg. Br.
,
1997
, Vol.
79
, No.
2
, pp. 235–239.
44.
Matsueda
,
M.
,
Gengerke
,
T. R.
,
Murphy
,
M.
,
Lew
,
W. D.
, and
Gustilo
,
R. B.
, “
Soft Tissue Release in Total Knee Arthroplasty: Cadaver Study Using Knees Without Deformities
,”
Clin. Orthop. Relat. Res.
, Vol.
366
,
1999
, pp. 264–273.
45.
Hautamaa
,
P. V.
,
Fithian
,
D. C.
,
Kaufman
,
K. R.
,
Daniel
,
D. M.
, and
Pohlmeyer
,
A. M.
, “
Medial Soft Tissue Restraints in Lateral Patellar Instability and Repair
,”
Clin. Orthop. Relat. Res.
, Vol.
349
,
1998
, pp. 174–182.
46.
Sathasivam
,
S.
and
Walker
,
P. S.
, “
Optimization of the Bearing Surface Geometry of Total Knees
,”
J. Biomech.
, Vol.
27
, No.
3
,
1994
, pp. 255–264.
47.
Sathasivam
,
S.
and
Walker
,
P.
, “
The Conflicting Requirements of Laxity and Conformity in Total Knee Replacement
,”
J. Biomech.
, Vol.
32
, No.
3
,
1999
, pp. 239–247.
48.
Huang
,
C.-H.
,
Ma
,
H. M.
,
Lee
,
Y. M.
, and
Ho
,
F. Y.
, “
Long-Term Results of Low Contact Stress Mobile-Bearing Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
, Vol.
416
,
2003
, pp. 265–270.
49.
Mihalko
,
W. M.
,
Whiteside
,
L. A.
, and
Krackow
,
K. A.
, “
Comparison of Ligament-Balancing Techniques during Total Knee Arthroplasty
,”
J. Bone Joint Surg. Am.
, Vol.
8
,
Suppl. 4
,
2003
, pp. 132–135.
50.
Kretzer
,
J. P.
,
Jakubowitz
,
E.
,
Sonntag
,
R.
,
Hofmann
,
K.
,
Heisel
,
C.
, and
Thomsen
,
M.
, “
Effect of Joint Laxity on Polyethylene Wear in Total Knee Replacement
,”
J. Biomech.
, Vol.
43
, No.
6
,
2010
, pp. 1092–1096.
51.
Harman
,
M. K.
,
DesJardins
,
J.
,
Benson
,
L.
,
Banks
,
S. A.
,
LaBerge
,
M.
, and
Hodge
,
W. A.
, “
Comparison of Polyethylene Tibial Insert Damage from In Vivo Function and In Vitro Wear Simulation
,”
J. Orthop. Res.
, Vol.
27
, No.
4
,
2009
, pp. 540–548.
52.
Berend
,
M. E.
,
Ritter
,
M. A.
,
Meding
,
J. B.
,
Faris
,
P. M.
,
Keating
,
E. M.
,
Redelman
,
R.
,
Faris
,
G. W.
, and
Davis
,
K. E.
, “
The Chetranjan Ranawat Award: Tibial Component Failure Mechanisms in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
428
,
2004
, pp. 26–34.
53.
Engh
,
G. A.
, “
The Difficult Knee: Severe Varus and Valgus
,”
Clin. Orthop. Relat. Res.
, Vol.
416
,
2003
, pp. 58–63.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal