Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 18th International Symposium
By
Robert J. Comstock
Robert J. Comstock
Symposium Chairperson and STP Editor
1
Westinghouse Electric Co.
, LLC (retired),
Pittsburgh, PA,
US
Search for other works by this author on:
Arthur T. Motta
Arthur T. Motta
Symposium Chairperson and STP Editor
2
Penn State University
,
University Park, PA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7641-6
No. of Pages:
1318
Publisher:
ASTM International
Publication date:
2018

Oxidation at high temperature (HT) of cladding materials is expected to be the primary cause of the fuel assemblies' degradation in spent fuel storage pool loss of cooling accidents. Unlike a loss-of-coolant accident (LOCA) in a reactor vessel, the presence of air in the atmosphere is expected in a spent fuel pool accident and is known to be an aggravating factor because of the “catalytic” role of nitrogen on the oxidation. In steam LOCA conditions, a low-temperature (LT) oxidation scale simulating the corrosion oxide formed during in-service use of the assemblies has been observed to have a protective effect regarding subsequent HT oxidation. In the presence of nitrogen, HT oxidation kinetic experiments show that the protective effect of an LT corrosion scale also exists but is lost much earlier than in pure steam. Oxygen transport through LT oxide layers has been studied using the 18O tracer technique. We performed experiments in 18O2 alone as well as in mixed 18O2 + N2 atmospheres, at 850°C. Micro-Raman imaging, both at the specimen surfaces and on cross sections, gave clear evidence for different characteristic distributions of 18O in the scales. Some of these distributions have been correlated with the presence of cracks and porosity in the LT oxide, which allows oxygen to locally penetrate in the scales. In cases in which no radial crack is present, apparent oxygen diffusion coefficients in the oxide were derived from fitting 18O diffusion profiles. Nitrogen appears to have no or only a limited influence on the oxygen diffusivity, but it is observed to reach the metal-oxide interface faster than oxygen, at which point it reacts with the metal and the sub-stoichiometric oxide to form zirconium nitride. The later conversion of the ZrN into ZrO2 might lead to the destabilization of the LT scale and to the loss of its protective effect.

1.
Volchek
,
A.
,
Zvonarev
,
Y.
, and
Schanz
,
G.
, “
Advanced Treatment of Zircaloy Cladding High-Temperature Oxidation in Severe Accident Code Calculations: PART II. Best-Fitted Parabolic Correlations
,”
Nucl. Engin. Design
, Vol.
232
, No.
1
,
2004
, pp. 85–96.
2.
Duriez
,
C.
,
Dupont
,
T.
,
Schmet
,
B.
, and
Enoch
,
F.
, “
Zircaloy-4 and M5 High Temperature Oxidation and Nitriding in Air
,”
J. Nucl. Mater.
, Vol.
380
, Nos.
1–3
,
2008
, pp. 30–45.
3.
Lasserre
,
M.
,
Peres
,
V.
,
Pijolat
,
M.
,
Coindreau
,
O.
,
Duriez
,
C.
, and
Mardon
,
J. P.
, “
Modelling of Zircaloy-4 Accelerated Degradation Kinetics in Nitrogen-Oxygen Mixtures at 850°C
,”
J. Nucl. Mater.
, Vol.
462
,
2015
, pp. 221–229.
4.
Steinbrück
,
M.
, “
Prototypical Experiments Relating to Air Oxidation of Zircaloy-4 at High Temperatures
,”
J. Nucl. Mater
, Vol.
392
, No.
3
,
2009
, pp. 531–534.
5.
Baek
,
J. H.
and
Jeong
,
Y. H.
, “
Steam Oxidation of Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr and Zircaloy-4 at 900-1200°C
,”
J. Nucl. Mater.
, Vol.
361
, No.
1
,
2007
, pp. 30–40.
6.
Brachet
,
J. C.
,
Vandenberghe-Maillot
,
V.
,
Portier
,
L.
,
Gilbon
,
D.
,
Lesbros
,
A.
,
Waeckel
,
N.
, and
Mardon
,
J-P
, “
Hydrogen Content, Preoxidation, and Cooling Scenario Effects on Post-Quench Microstructure and Mechanical Properties of Zircaloy-4 and M5 Alloys in LOCA Conditions
,”
Zirconium in Nuclear Industry: 15th International Symposium, ASTM STP1505
,
Kammenzind
B.
and
Limbäck
M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2008
, pp. 91–118.
7.
Chuto
,
T.
Oxidation of High Burnup Fuel Cladding in LOCA Conditions
,” presented at Fuel Safety Research Meeting,
Tokai, Japan
, May 19–20,
2010
.
8.
Fuketa
,
T.
JAERI Experimental Basis on RIA and LOCA
,” presented at OECD/CSNI/SEGFSM Meeting, Organisation for Economic Co-operation and Development, Paris, France, April 25–26,
2005
.
9.
Guilbert
,
S.
,
Duriez
,
C.
, and
Grandjean
,
C.
, “
Influence of a Pre-Oxide Layer on Oxygen Diffusion and on Post-Quench Mechanical Properties of Zircaloy-4 after Steam Oxidation at 900°C
,” presented at LWR Fuel Performance Meeting/Top Fuel/WRFPM 2010,
Orlando, FL
, September 26–9,
2010
.
10.
Guilbert
,
S.
,
Lacote
,
P.
,
Montigny
,
G.
,
Duriez
,
C.
,
Desquines
,
J.
, and
Grandjean
,
C.
, “
Effect of Pre-Oxide on Zircaloy-4 High Temperature Steam Oxidation and Post-Quench Mechanical Properties
,”
Zirconium in Nuclear Industry: 17th Volume, ASTM STP1543
,
Comstock
R.
and
Barbéris
P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2014
, pp. 1–27.
11.
Le Saux
,
M.
,
Brachet
,
J. C.
,
Vandenberghe
,
V.
,
Gilbon
,
D.
,
Mardon
,
J. P.
, and
Sebbari
,
B.
, “
Influence of Pre-Transient Oxide on LOCA High Temperature Steam Oxidation and Post-Quench Mechanical Properties of Zircaloy-4 and M5™ Cladding
,” presented at LWR Fuel Performance Meeting/Top Fuel/WRFPM 2011,
Chengdu, China
, September 11–14,
2011
.
12.
Leistikow
,
S.
,
Schanz
,
G.
, and
Berg
,
H. V.
, “
Kinetik und Morphologie der Isothermen Dampf-Oxidation von Zircaloy 4 bei 700-1300°C
,” Report, KFK 2587,
1978
.
13.
Mazères
,
B.
, “
Etude Expérimentale et Modélisation de l'Oxydation et des Transformations de Phases Associées dans les Gaines en Alliage de Zirconium
,” PhD thesis,
Institut National Polytechnique de Toulouse
,
2013
.
14.
Vrtilkova
,
V.
, “
Review of Recent Work at UJP PRAHA on the LOCA Embrittlement Criterion
,” presented at the 6th Plenary Meeting of the OECD/CSNI/SEGFSM,
Paris, France
, April 25–26,
2005
.
15.
Natesan
,
K.
and
Soppet
,
W. K.
, “
Air Oxidation Kinetics for Zr-based Alloys
,”
Argonne National Laboratory
, US-NRC, NUREG/CR-5846,
2004
.
16.
Duriez
,
C.
,
Drouan
,
D.
, and
Pouzadoux
,
G.
, “
Reaction in Air and in Nitrogen of Pre-oxidised Zircaloy-4 and M5™ Claddings
,”
J. Nucl. Mater.
, Vol.
441
, Nos.
1–3
,
2013
, pp. 84–95.
17.
Duriez
,
C.
,
Guerain
,
M.
,
Lacôte
,
P.
, and
Mermoux
,
M.
, “
Effect of the Pre-Transient Oxide on Zy-4 Cladding Degradation in Air and Air + Steam Atmospheres
,” presented at
Fontevraud 8: Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability
,
Avignon, France
, September 14–18,
2013
.
18.
McIntyre
,
N. S.
and
Graham
,
M. J.
, “
Study of Metal Corrosion and Oxidation Phenomenon Using Secondary Ion Mass Spectrometry
,”
Analytical Methods in Corrosion Science and Engineering
,
Marcus
P.
and
Mansfeld
F.
, Eds.,
CRC Press
,
Boca Raton, FL
,
2006
, pp. 65–102.
19.
Godlewski
,
J.
,
Gros
,
J. P.
,
Lambertin
,
M.
,
Wadier
,
J. F.
, and
Weidinger
,
H.
, “
Raman Spectroscopy Study of the Tetragonal to Monoclinic Transition in Zirconium Oxide Scales and Determination of Overall Oxygen Diffusion by Nuclear Microanalysis of O18
,”
Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP1132
,
Eucken
C. M.
and
Garde
A. M.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp. 416–436.
20.
Barberis
,
P.
,
Merle-Méjean
,
T.
, and
Quintard
,
P.
, “
On Raman Spectroscopy of Zirconium Oxide Films
,”
J. Nucl. Mater.
, Vol.
246
, Nos.
2–3
,
1997
, pp. 232–243.
21.
Godlewski
,
J.
,
Bouvier
,
P.
,
Lucazeau
,
G.
, and
Fayette
,
L.
, “
Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zr-Based Alloys
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP1354
,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp. 877–900.
22.
Idarraga
,
I.
,
Mermoux
,
M.
,
Duriez
,
C.
,
Crisci
,
A.
, and
Mardon
,
J. P.
, “
Potentialities of Raman Imaging for the Analysis of Oxide Scales Formed on Zircaloy-4 and M5 in Air at High Temperature
,”
J. Oxid. Met.
, Vol.
79
, Nos.
3–4
,
2013
, pp. 289–302.
23.
Bouvier
,
P.
, “
Etude Raman des Distributions de Phases et de Contraintes dans des Couches d'Oxydation d'Alliages de Zirconium
,” PhD thesis,
Institut National Polytechnique de Grenoble
,
2000
.
24.
Guerain
,
M.
,
Mermoux
,
M.
, and
Duriez
,
C.
, “
The Use of Micro-Raman Imaging to Measure 18O Tracer Distribution in Thermally Grown Zirconia Scales
,”
Corr. Sci.
, Vol.
98
,
2015
, pp. 140–149.
25.
Kim
,
B. K.
and
Hamaguchi
,
H. O.
, “
Mode Assignments of the Raman Spectrum of Monoclinic Zirconia by Isotopic Exchange Technique
,”
Phys. Stat. Sol. (B) Basic Res.
, Vol.
203
, No.
2
,
1997
, pp. 557–563.
26.
Guerain
,
M.
,
Duriez
,
C.
,
Grosseau-Poussard
,
J. L.
, and
Mermoux
,
M.
, “
Review of Stress Fields in Zirconium Alloys Corrosion Scales
,”
Corr. Sci.
, Vol.
95
,
2015
, pp. 11–21.
27.
Mishin
,
Y.
and
Herzig
,
C.
, “
Diffusion in Fine-Grained Materials: Theoretical Aspects and Experimental Possibilities
,”
Nanostruct. Mater.
, Vol.
6
, Nos.
5–8
,
1995
, pp. 859–862.
28.
Bryner
,
J. S.
, “
The Cyclic Nature of Corrosion of Zircaloy-4 in 633 K Water
,”
J. Nucl. Mater.
, Vol.
82
, No.
1
,
1979
, pp. 84–101.
29.
Bossis
,
P.
,
Pêcheur
,
D.
,
Hanifi
,
K.
,
Thomazet
,
J.
, and
Blat
,
M.
, “
Comparison of the High Burn-up Corrosion on M5 and Low Tin Zircaloy-4
,”
Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP1467
,
Rudling
P.
and
Kammenzind
B.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2005
, pp. 494–525.
30.
Busser
,
V.
,
Desquines
,
J.
,
Fouquet
,
S.
,
Baietto
,
M.-C.
, and
Mardon
,
J.-P.
, “
Modelling of Corrosion Induced Stresses during Zircaloy-4 Oxidation in Air
,”
Mater. Sci. Forum
, Vols.
595–598
,
2008
, pp. 419–427.
31.
Idarraga
,
I.
,
Mermoux
,
M.
,
Duriez
,
C.
,
Crisci
,
A.
, and
Mardon
,
J. P.
, “
Raman Investigation of Pre- and Post-Breakaway Oxide Scales Formed on Zircaloy-4 and M5 in Air at High Temperature
,”
J. Nucl. Mater.
, Vol.
421
, Nos.
1–3
,
2012
, pp. 160–171.
32.
Pêcheur
,
D.
,
Godlewski
,
J.
,
Peybernès
,
J.
,
Fayette
,
L.
,
Noé
,
M.
,
Frichet
,
A.
, and
Kerrec
,
O.
, “
Contribution to the Understanding of the Effect of the Water Chemistry on the Oxidation Kinetics of Zircaloy-4 Cladding
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP1354
,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp. 793–811.
33.
Barberis
,
P.
,
Corolleur-Thomas
,
G.
,
Guinebretière
,
R.
,
Merle-Mejean
,
T.
,
Mirgorodsky
,
A.
, and
Quintard
,
P.
, “
Raman Spectra of Tetragonal Zirconia: Powder to Zircaloy Oxide Frequency Shift
,”
J. Nucl. Mater.
, Vol.
288
, Nos.
2–3
,
2001
, pp. 241–247.
34.
Duriez
,
C.
,
Guerain
,
M.
,
Lacôte
,
P.
, and
Mermoux
,
M.
, “
Effect of the Pre-Transient Oxide on Zy-4 Cladding Degradation in Air Accidents
,” presented at
Fontevraud 8: Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability, France, Avignon–2013
, September 14–18,
2013
.
35.
Methivier
,
A.
and
Pijolat
,
M.
, “
Thermal Stability of Zirconia as a Catalyst Support: Kinetics and Modelling
,”
J. Catal.
, Vol.
139
, No.
2
,
1993
, pp. 329–337.
36.
Pan
,
G.
,
Garde
,
A. M.
, and
Atwood
,
A. R.
, “
Performance and Property Evaluation of High-Burnup Optimized ZIRLO™ Cladding
,”
Zirconium in the Nuclear Industry: 17th Volume, ASTM STP1543
,
Comstock
R.
and
Barbéris
P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2015
, pp. 607–627.
37.
Brossmann
,
U.
,
Knöner
,
G.
,
Schaefer
,
H. E.
, and
Würschum
,
R.
, “
Oxygen Diffusion in Nanocrystalline ZrO2
,”
Rev. Adv. Mater. Sci.
, Vol.
6
, No.
1
,
2004
, pp. 7–11.
38.
Basu
,
S. N.
and
Halloran
,
J. W.
, “
Tracer Isotope Distribution in Growing Oxide Scales
,”
J. Oxid. Met.
, Vol.
27
, Nos.
3–4
,
1987
, pp. 143–155.
39.
Ma
,
X.
,
Toffolon-Masclet
,
C.
,
Guilbert
,
T.
,
Hamon
,
D.
, and
Brachet
,
J. C.
, “
Oxidation Kinetics and Oxygen Diffusion in Low-Tin Zircaloy-4 up to 1523 K
,”
J. Nucl. Mater.
, Vol.
377
, No.
2
,
2008
, pp. 359–369.
40.
Sternik
,
M.
and
Parlinski
,
K.
, “
Lattice Vibrations in Cubic, Tetragonal, and Monoclinic Phases of ZrO2
,”
J. Chem. Phys.
, Vol.
122
, No.
6
,
2005
, pp. 064707–064707-6.
41.
Denis
,
A.
and
Garcia
,
E. A.
, “
Diffusion in a Semi-Infinite System with a Moving Interphase Considering Solvent Density Change: Application to the Oxidation of Zirconium
,”
J. Nucl. Mater.
, Vol.
96
, Nos.
1–2
,
1981
, pp. 127–140.
42.
Lasserre
,
M.
,
Peres
,
V.
,
Pijolat
,
M.
,
Coindreau
,
O.
,
Duriez
,
C.
, and
Mardon
,
J. P.
, “
Qualitative Analysis of Zircaloy-4 Cladding Air Degradation in O2-N2 Mixtures at High Temperature
,”
Mater. Corr.
, Vol.
65
, No.
3
,
2014
, pp. 250–259.
43.
Chung
,
T. J.
,
Lee
,
J. S.
,
Kim
,
D. Y.
, and
Song
,
H.
, “
Surface Nitridation of Yttria-Doped Tetragonal Zirconia Polycrystals (Y-TZP): Microstructural Evolution and Kinetics
,”
J. Amer. Ceram. Soc.
, Vol.
82
, No.
11
,
1999
, pp. 3193–3199.
44.
Deghenghi
,
G.
,
Chung
,
T. J.
, and
Sergo
,
V.
, “
Raman Investigation of the Nitridation of Yttria-Stabilized Tetragonal Zirconia
,”
J. Amer. Ceram. Soc.
, Vol.
86
, No.
1
,
2003
, pp. 169–173.
45.
Kilo
,
M.
,
Argirusis
,
C.
,
Borchardt
,
G.
, and
Jackson
,
R. A.
, “
Oxygen Diffusion in Yttria Stabilised Zirconia: Experimental Results and Molecular Dynamics Calculations
,”
Phys. Chem. Chem. Phys.
, Vol.
5
, No.
11
,
2003
, pp. 2219–2224.
46.
Kilo
,
M.
,
Taylor
,
M. A.
,
Argirusis
,
C.
,
Borchardt
,
G.
,
Lerch
,
M.
,
Kaïtasov
,
O.
, and
Lesage
,
B.
, “
Nitrogen Diffusion in Nitrogen-Doped Yttria Stabilised Zirconia
,”
Phys. Chem. Chem. Phys.
, Vol.
6
, No.
13
,
2004
, pp. 3645–3649.
47.
Kilo
,
M.
,
Taylor
,
M. A.
,
Borchardt
,
G.
,
Kaiser-Bischoff
,
I.
,
Boysen
,
H.
,
Rödel
,
C.
, and
Lerch
,
M.
, “
Fast Anion-Conduction in Oxynitrides: Oxygen and Nitrogen Transport in (Y, Zr)-(O, N)
,”
Diffusion-Fundamentals
, Vol.
8
,
2008
, pp. 8.1–8.7.
48.
Anttila
,
A.
,
Räisänen
,
J.
, and
Keinonen
,
J.
, “
Diffusion of Nitrogen in α-Zr and α-Hf
,”
J. Less-Common Met.
, Vol.
96
,
1984
, pp. 257–262.
49.
Ruban
,
A. V.
,
Baykov
,
V. I.
,
Johansson
,
B.
,
Dmitriev
,
V. V.
, and
Blanter
,
M. S.
, “
Oxygen and Nitrogen Interstitial Ordering in hcp Ti, Zr, and Hf: An Ab Initio Study
,”
Physical Rev. B Condensed Matter Mater. Phys.
, Vol.
82
, No.
13
,
2010
, id. 134110.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal