Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Zirconium in the Nuclear Industry: 18th International Symposium
By
Robert J. Comstock
Robert J. Comstock
Symposium Chairperson and STP Editor
1
Westinghouse Electric Co.
, LLC (retired),
Pittsburgh, PA,
US
Search for other works by this author on:
Arthur T. Motta
Arthur T. Motta
Symposium Chairperson and STP Editor
2
Penn State University
,
University Park, PA,
US
Search for other works by this author on:
ISBN:
978-0-8031-7641-6
No. of Pages:
1318
Publisher:
ASTM International
Publication date:
2018

Although the evolution of irradiation-induced dislocation loops has been well correlated with irradiation-induced growth phenomena, the effect of alloying elements on this evolution remains elusive, especially at low fluences. To develop a more mechanistic understanding of the role iron has on loop formation, we used state-of-the-art techniques to study a proton-irradiated Zr-0.1Fe alloy and proton- and neutron-irradiated Zircaloy-2. The two alloys were irradiated with 2-MeV protons up to 7 dpa at 350°C and Zircaloy-2 up to 14.7 × 1025 n · m−2, approximately 24 dpa, in a boiling water reactor at approximately 300°C. Baseline transmission electron microscopy showed that the Zr3Fe secondary-phase particles in the binary system were larger and fewer in number than the Zr(Fe,Cr)2 and Zr2(Fe,Ni) particles in Zircaloy-2. An analysis of the irradiated binary alloy revealed only limited dissolution of Ze3Fe, suggesting little dispersion of iron into the matrix, while at the same time a higher <a>-loop density was observed compared with Zircaloy-2 at equivalent proton dose levels. We also found that the redistribution of iron during irradiation led to the formation of iron nanoclusters. A delay in the onset of <c>-loop nucleation in proton-irradiated Zircaloy-2 compared with the binary alloy was observed. The effect of iron redistributed from secondary-phase particles because of dissolution on the density and morphology of <a> and <c> loops is described. The implication this may have on irradiation-induced growth of zirconium fuel cladding is also discussed.

1.
Holt
,
R. A.
, “
Mechanisms of Irradiation Growth of Alpha-Zirconium Alloys
,”
J. Nucl. Mater.
, Vol.
159
,
1988
, pp. 310–338.
2.
Fidleris
,
V.
,
Tucker
,
R. P.
, and
Adamson
,
R. B.
, “
An Overview of Microstructural and Experimental Factors That Affect the Irradiation Growth Behavior of Zirconium Alloys
,”
Zirconium in the Nuclear Industry, ASTM STP939
,
Adamson
R. B.
,
Leo
F.
, and
Van Swam
F. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1987
, pp. 49–85.
3.
Gilbon
,
D.
,
Somiak
,
A.
,
Doriot
,
S.
, and
Mardon
,
J.
, “
Irradiation Creep and Growth Behavior, and Microstructural Evolution of Advanced Zr-Base Alloys
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP1354
,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp. 51–73.
4.
Onimus
,
F.
and
Bechade
,
J. L.
, “
Radiation Effects in Zirconium Alloys
,”
Compr. Nucl. Mater.
, Vol.
4
,
2012
, pp. 273–246.
5.
Pickman
,
D. O.
, “
Interactions between Fuel Pins and Assembly Components
,”
Nucl. Eng. Des.
, Vol.
33
, No.
2
,
1975
, pp. 125–140.
6.
Adamson
,
R. B.
, “
Effects of Neutron Irradiation on Microstructure and Properties of Zircaloy
,”
Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP1354
,
Sabol
G. P.
and
Moan
G. D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp. 15–31.
7.
Carpenter
,
G. J. C.
and
Northwood
,
D. O.
, “
The Contribution of Dislocation Loops to Radiation Growth and Creep of Zircaloy-2
,”
J. Nucl. Mater.
, Vol.
56
, No.
3
,
1975
, pp. 260–266.
8.
Woo
,
C. H.
, “
Modeling Irradiation Growth of Zirconium and Its Alloys
,”
Radiat. Eff. Defects Solids
, Vol.
144
, Nos.
1–4
,
1998
, pp. 145–169.
9.
Jostsons
,
A.
,
Kelly
,
P. M.
, and
Blake
,
R. G.
, “
The Nature of Dislocation Loops in Neutron Irradiated Zirconium
,”
J. Nucl. Mater.
, Vol.
66
, No.
3
,
1977
, pp. 236–256.
10.
Holt
,
R. A.
and
Gilbert
,
R. W.
, “
c-Component Dislocations in Annealed Zircaloy Irradiated at about 570 K
,”
J. Nucl. Mater.
, Vol.
137
, No.
3
,
1986
, pp. 185–189.
11.
Gilbert
,
R. W.
, “
Amorphous Intermetallics in Neutron Irradiated Zircaloys after High Fluences
,”
J. Nucl. Mater.
, Vol.
135
, No.
2
,
1985
, pp. 265–268.
12.
Yang
,
W. J. S.
, “
Precipitate Stability in Neutron-Irradiated Zircaloy-4
,”
J. Nucl. Mater.
, Vol.
158
,
1988
, pp. 71–80.
13.
Griffiths
,
M.
and
Gilbert
,
R. W.
, “
The Formation of c-Component Defects in Zirconium Alloys during Neutron Irradiation
,”
J. Nucl. Mater.
, Vol.
150
, No.
2
,
1987
, pp. 169–181.
14.
Garzarolli
,
F.
,
Goll
,
W.
,
Seibold
,
A.
, and
Ray
,
I.
, “
Effect of In-PWR Irradiation on Size, Structure, and Composition of Intermetallic Precipitates of Zr Alloys
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 541–556.
15.
Harte
,
A.
,
Topping
,
M.
,
Frankel
,
P.
,
Jädernäs
,
D.
,
Romero
,
J.
,
Hallstadius
,
L.
,
Darby
,
E. C.
, and
Preuss
,
M.
, “
Nano-Scale Chemical Evolution in a Proton-and Neutron-Irradiated Zr Alloy
,”
J. Nucl. Mater.
, Vol.
487
,
2017
, pp. 30–42.
16.
de Carlan
,
Y.
,
Regnard
,
C.
, and
Griffiths
,
M.
, “
Influence of Iron in the Nucleation of <c> Component Dislocation Loops in Irradiated Zircaloy-4
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 638–653.
17.
Christien
,
F.
and
Barbu
,
A.
, “
Cluster Dynamics Modelling of Irradiation Growth of Zirconium Single Crystals
,”
J. Nucl. Mater.
, Vol.
393
, No.
1
,
2009
, pp. 153–161.
18.
Harte
,
A.
,
Seymour
,
T.
,
Francis
,
E. M.
,
Frankel
,
P.
,
Thompson
,
S. P.
,
Jädernäs
,
D.
,
Romero
,
J.
,
Hallstadius
,
L.
, and
Preuss
,
M.
, “
Advances in Synchrotron X-Ray Diffraction and Transmission Electron Microscopy Techniques for the Investigation of Microstructure Evolution in Proton- and Neutron-Irradiated Zirconium Alloys
,”
J. Mater. Res.
, Vol.
30
, No.
9
,
2015
, pp. 1349–1365.
19.
Griffiths
,
M.
,
Gilbert
,
R. W.
, and
Carpenter
,
G. J. C.
, “
Phase Instability, Decomposition and Redistribution of Intermetallic Precipitates in Zircaloy-2 and -4 during Neutron Irradiation
,”
J. Nucl. Mater.
, Vol.
150
, No.
1
,
1987
, pp. 53–66.
20.
Griffiths
,
M.
,
Holt
,
R. A.
, and
Rogerson
,
A.
, “
Microstructural Aspects of Accelerated Deformation of Zircaloy Nuclear Reactor Components during Service
,”
J. Nucl. Mater.
, Vol.
225
,
1995
, pp. 245–258.
21.
Valizadeh
,
S.
,
Ledergerber
,
G.
,
Abolhassan
,
S.
,
Jädernäs
,
D.
,
Dahlbäck
,
M.
, and
Mader
,
E. V.
, “
Effects of Secondary Phase Particle Dissolution on the In-Reactor Performance of BWR Cladding
,”
Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP1529
,
Limbäck
M.
and
Barbéris
P.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2012
, pp. 729–753.
22.
Yagnik
,
S.
,
Adamson
,
R.
,
Koblyansky
,
G.
,
Chen
,
J.-H.
,
Gilbon
,
D.
,
Ishimoto
,
S.
,
Fukuda
,
T.
,
Hallstadius
,
L.
,
Obukhov
,
A.
, and
Mahmood
,
S.
, “
Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behaviour of Zirconium Alloy Variants
,”
Zirconium in the Nuclear Industry: 18th International Symposium, ASTM STP1597
,
Comstock
R. J.
and
Motta
A. T.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2018
, pp. 748–795.
23.
Shishov
,
V. N.
,
Peregud
,
M. M.
,
Nikulina
,
A. V.
,
Pimenov
,
Y. V.
,
Kobylyansky
,
G. P.
,
Novoselov
,
A. E.
,
Ostrovsky
,
Z. E.
and
Obukhov
,
A. V.
, “
Influence of Structure—Phase State of Nb Containing Zr Alloys on Irradiation-Induced Growth
,”
Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP1467
,
Rudling
P.
and
Kammenzind
B.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2005
, pp. 666–685.
24.
Griffiths
,
M.
, “
A Review of Microstructure Evolution in Zirconium Alloys during Irradiation
,”
J. Nucl. Mater.
, Vol.
159
,
1988
, pp. 190–218.
25.
Griffiths
,
M.
,
Gilbert
,
R. W.
,
Fidleris
,
V.
,
Tucker
,
R. P.
, and
Adamson
,
R. B.
, “
Neutron Damage in Zirconium Alloys Irradiated at 644 to 710K
,”
J. Nucl. Mater.
, Vol.
150
, No.
2
,
1987
, pp. 159–168.
26.
Harte
,
A.
,
Jädernäs
,
D.
,
Topping
,
M.
,
Frankel
,
P.
,
Race
,
C. P.
,
Romero
,
J.
,
Hallstadius
,
L.
,
Darby
,
E. C.
, and
Preuss
,
M.
, “
The Effect of Matrix Chemistry on Dislocation Evolution in an Irradiated Zr Alloy
,”
Acta Mater.
, Vol.
130
,
2017
, pp. 69–82.
27.
Woo
,
O. T.
and
Carpenter
,
G. J. C.
, “
Radiation-Induced Precipitation in Zircaloy-2
,”
J. Nucl. Mater.
, Vol.
159
,
1988
, pp. 397–404.
28.
Sundell
,
G.
,
Thuvander
,
M.
,
Tejland
,
P.
,
Dahlback
,
M.
,
Hallstadius
,
L.
, and
Andrenn
,
H. O.
, “
Redistribution of Alloying Elements in Zircaloy-2 after In-Reactor Exposure
,”
J. Nucl. Mater.
, Vol.
454
, Nos.
1–3
,
2014
, pp. 178–185.
29.
Griffiths
,
M.
,
Gilbon
,
D.
,
Regnard
,
C.
, and
Lemaignan
,
C.
, “
HVEM Study of the Effects of Alloying Elements and Impurities on Radiation Damage in Zr-Alloys
,”
J. Nucl. Mater.
, Vol.
205
,
1993
, pp. 273–283.
30.
Hallstadius
,
L.
,
Johnson
,
S.
, and
Lahoda
,
E.
, “
Cladding for High Performance Fuel
,”
Prog. Nucl. Energy
, Vol.
57
,
2012
, pp. 71–76.
31.
Stoller
,
R. E.
,
Toloczko
,
M. B.
,
Was
,
G. S.
,
Certain
,
A. G.
,
Dwaraknath
,
S.
, and
Garner
,
F. A.
, “
On the Use of SRIM for Computing Radiation Damage Exposure
,”
Nucl. Instr. Methods Phys. Res. B
, Vol.
310
,
2013
, pp. 75–80.
32.
Valizadeh
,
S.
,
Ledergerber
,
G.
,
Abolhassan
,
S.
,
Zhou
,
G.
,
Wright
,
J.
, and
Hallstadius
,
L.
, “
Effects of Secondary Phase Particle Dissolution on the In-Reactor Performance of BWR Cladding
,”
Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP1529
,
Magnus
L.
and
Pierre
B.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2012
, pp. 729–753.
33.
Toffolon-Masclet
,
C.
,
Brachet
,
J-C.
, and
Jago
,
G.
, “
Studies of Second Phase Particles in Different Zirconium Alloys Using Extractive Carbon Replica and an Electrolytic Anodic Dissolution Procedure
,”
J. Nucl. Mater.
, Vol.
305
, Nos.
2–3
,
2002
, pp. 224–231.
34.
Ardisson
,
J. D.
,
Maneur
,
R. A.
, and
Silva
,
E. G.
, “
A Study of Structural and Electronic Properties of the Alloy Systems (Zr1-x Tix)2 Fe and (Zr1-x Tix)3 Fe in the Range 0 <= x <= 0.2
,”
Scr. Mater. Mater.
, Vol.
25
, No.
2
,
1991
, pp. 1327–1331.
35.
Dingley
,
D. J.
, “
Dislocation Invisibility in Dark-Field Electron Microscopy
,”
Phys. Status Solidi B
, Vol.
38
, No.
1
,
1970
, pp. 345–355.
36.
Okamoto
,
P. R.
,
Levine
,
E.
, and
Thomas
,
G.
, “
Kikuchi Maps for hcp and bcc Crystals
,”
J. Appl. Phys.
, Vol.
38
, No.
289
,
1967
, pp. 289–296.
37.
Jostsons
,
A.
,
Blake
,
R. G.
,
Napier
,
P. M.
, and
Farrell
,
K.
, “
Faulted Loops in Neutron-Irradiated Zirconium
,”
J. Nucl. Mater.
, Vol.
68
, No.
3
,
1977
, pp. 267–276.
38.
Thompson
,
K.
,
Lawrence
,
D.
,
Larson
,
D. J.
,
Olson
,
J. D.
,
Kelly
,
T. F.
, and
Gorman
,
B.
, “
In Situ Site-Specific Specimen Preparation for Atom Probe Tomography
,”
Ultramicroscopy
, Vol.
107
, Nos.
2–3
,
2007
, pp. 131–139.
39.
Warren
,
P.
,
Cerezo
,
A.
, and
Smith
,
G. D.
, “
Observation of Atomic Planes in 3DAP Analysis
,”
Ultramicroscopy
, Vol.
73
, Nos.
1–4
,
1998
, pp. 261–266.
40.
Shishov
,
V. N.
,
Nikulina
,
A. V.
, and
Vladimir
,
A.
, “
Influence of Neutron Irradiation on Dislocation Structure and Phase Composition of Zr-Base Alloys
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium, STP1295
,
Bradley
E. R.
and
Sabol
G. P.
, Eds.
ASTM International
,
West Conshohocken, PA
,
1996
, pp. 603–621.
41.
Motta
,
A. T.
,
Howe
,
L. M.
, and
Okamoto
,
P. R.
, “
Amorphization Kinetics of Zr3Fe under Electron Irradiation
,”
J. Nucl. Mater.
, Vol.
205
,
1993
, pp. 258–266.
42.
Howe
,
L. M.
,
Phillips
,
D.
,
Motta
,
A. T.
, and
Okamoto
,
P. R.
, “
Irradiation-Induced Phase Transformations in Zirconium Alloys
,”
Surf. Coatings Technol.
, Vol.
66
,
1994
, pp. 411–418.
43.
Harte
,
A.
,
Topping
,
M.
,
Frankel
,
P.
,
Jadernas
,
D.
,
Romero
,
J.
,
Hallstadius
,
L.
,
Darby
,
E. C.
, and
Preuss
,
M.
, “
Nano-Scale Chemical Evolution in a Proton- and Neutron-Irradiated Zr Alloy
,”
J. Nucl. Mater.
,
2017
, pp. 30–42.
44.
Zu
,
X. T.
,
Sun
,
K.
,
Atzmon
,
M.
,
Wang
,
L. M.
,
You
,
L. P.
,
Wan
,
F. R.
,
Busby
,
J. T.
,
Was
,
G. S.
, and
Adamson
,
R. B.
, “
Effect of Proton and Ne Irradiation on the Microstructure of Zircaloy 4
,”
Philos. Mag.
, Vol.
85
, Nos.
4–7
,
2005
, pp. 649–659.
45.
Idrees
,
Y.
,
Francis
,
E. M.
,
Yao
,
Z.
,
Korinek
,
A.
,
Kirk
,
M. A.
,
Sattari
,
M.
,
Preuss
,
M.
, and
Daymond
,
M. R.
, “
Effects of Alloying Elements on the Formation of c-Component Loops in Zr Alloy Excel under Heavy Ion Irradiation
,”
J. Mater. Res.
, Vol.
30
, No.
9
,
2015
, pp. 1310–1334.
46.
Motta
,
A. T.
, “
Amorphization of Intermetallic Compounds under Irradiation—A Review
,”
J. Nucl. Mater.
, Vol.
244
, No.
3
,
1997
, pp. 227–250.
47.
Griffiths
,
M.
,
Loretto
,
M. H.
, and
Smallman
,
R. E.
, “
Electron Damage in Zirconium: II. Nucleation and Growth of c-Component Loops
,”
J. Nucl. Mater.
, Vol.
115
, Nos.
2–3
,
1983
, pp. 323–330.
48.
Yang
,
W. J. S.
,
Tucker
,
R. P.
,
Cheng
,
B.
, and
Adamson
,
R. B.
, “
Precipitates in Zircaloy: Identification and the Effects of Irradiation and Thermal Treatment
,”
J. Nucl. Mater.
, Vol.
138
, Nos.
1–2
,
1986
, pp. 185–195.
49.
Etoh
,
Y.
and
Shimada
,
S.
, “
Neutron Irradiation Effects on Intermetallic Precipitates in Zircaloy as a Function of Fluence
,”
J. Nucl. Mater.
, Vol.
200
,
1993
, pp. 59–69.
50.
Etoh
,
Y.
and
Shimada
,
S.
, “
Irradiation-Induced Dissolution of Precipitates in Zircaloy-2
,”
J. Nucl. Sci. Technol.
,
1992
, pp. 358–366.
51.
Christensen
,
M.
,
Wolf
,
W.
,
Freeman
,
C. M.
,
Wimmer
,
E.
,
Adamson
,
R. B.
,
Hallstadius
,
L.
,
Cantonwine
,
P. E.
, and
Mader
,
E. V.
, “
Effect of Alloying Elements on the Properties of Zr and the Zr-H System
,”
J. Nucl. Mater.
, Vol.
445
, Nos.
1–3
,
2014
, pp. 241–250.
52.
Zee
,
R. H.
,
Rogerson
,
A.
,
Carpenter
,
G. G. J.
, and
Watters
,
J.
, “
Effect of Tin on the Irradiation Growth of Polycrystalline Zirconium
,”
J. Nucl. Mater.
, Vol.
120
, Nos.
2–3
,
1984
, pp. 223–229.
53.
Rogerson
,
A.
and
Zee
,
R. H.
, “
Irradiation Growth in Zirconium-Tin Alloys at 353 and 553K
,”
J. Mater. Res.
, Vol.
152
, Nos.
2–3
,
1988
, pp. 220–224.
54.
Varvenne
,
C.
,
Mackain
,
O.
, and
Clouet
,
E.
, “
Vacancy Clustering in Zirconium: An Atomic-Scale Study
,”
Acta Mater.
, Vol.
78
,
2014
, pp. 65–77.
55.
Wooding
,
S. J.
,
Howe
,
L. M.
,
Gao
,
F.
,
Calder
,
A. F.
, and
Bacon
,
D. J.
, “
A Molecular Dynamics Study of High-Energy Displacement Cascades in α-Zirconium
,”
J. Nucl. Mater.
, Vol.
254
, Nos.
2–3
,
1998
, pp. 191–204.
56.
Samolyuk
,
G. D.
,
Barashev
,
A. V.
,
Golubov
,
S. I.
,
Osetsky
,
Y. N.
, and
Stoller
,
R. E.
, “
Analysis of the Anisotropy of Point Defect Diffusion in hcp Zr
,”
Acta Mater.
, Vol.
78
,
2014
, pp. 173–180.
57.
Woo
,
C. H.
, “
Theory of Irradiation Deformation in Non-Cubic Metals: Effects of Anisotropic Diffusion
,”
J. Nucl. Mater.
, Vol.
159
,
1988
, pp. 237–256.
58.
Woo
,
C. H.
, “
Defect Accumulation Behaviour in HCP Metals and Alloys
,”
J. Nucl. Mater.
, Vol.
276
, Nos.
1–3
,
2000
, pp. 90–103.
59.
Griffiths
,
M.
,
Gilbert
,
R. W.
, and
Coleman
,
C. E.
, “
Grain Boundary Sinks in Neutron-Irradiated Zr and Zr-Alloys
,”
J. Nucl. Mater.
, Vol.
159
,
1988
, pp. 405–416.
60.
Odette
,
G. R.
,
Alinger
,
M. J.
, and
Wirth
,
B. D.
, “
Recent Developments in Irradiation-Resistant Steels
,”
Annu. Rev. Mater. Res.
, Vol.
38
,
2008
, pp. 471–503.
61.
Schaublin
,
R.
,
Ramar
,
A.
,
Baluc
,
N.
, de
Castro
,
V.
,
Monge
,
M. A.
,
Leguey
,
L.
,
Schmid
,
N.
, and
Bonjour
,
C.
, “
Microstructural Development under Irradiation in European ODS Ferritic/Martensitic Steels
,”
J. Nucl. Mater.
, Vol.
351
, Nos.
1–3
,
2006
, pp. 247–260.
62.
Ukai
,
S.
and
Fujiwara
,
M.
, “
Perspective of ODS Alloys Application in Nuclear Environments
,”
J. Nucl. Mater.
, Vol.
307–311
,
2002
, Pt.
1
, pp. 749–757.
63.
Brodrick
,
J.
,
Hepburn
,
D. J.
, and
Ackland
,
G. J.
, “
Mechanism for Radiation Damage Resistance in Yttrium Oxide Dispersion Strengthened Steels
,”
J. Nucl. Mater.
, Vol.
445
, Nos.
1–3
,
2014
, pp. 291–297.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal