Skip to Main Content
Skip Nav Destination
ASTM Selected Technical Papers
Modularity and Tapers in Total Joint Replacement Devices
By
A. Seth Greenwald, D.Phil.(Oxon)
A. Seth Greenwald, D.Phil.(Oxon)
Symposium Chairperson and STP Editor
1
Orthopaedic Research Laboratories
,
Cleveland, OH,
US
Search for other works by this author on:
Steven M. Kurtz, Ph.D.
Steven M. Kurtz, Ph.D.
Symposium Chairperson and STP Editor
2
Exponent, Inc.
,
Philadelphia, PA,
US
Search for other works by this author on:
Jack E. Lemons, Ph.D.
Jack E. Lemons, Ph.D.
Symposium Chairperson and STP Editor
3
University of Alabama at Birmingham
,
Birmingham, AL,
US
Search for other works by this author on:
William M. Mihalko, M.D., Ph.D.
William M. Mihalko, M.D., Ph.D.
Symposium Chairperson and STP Editor
4
Campbell Clinic Orthopaedics, University of Tennessee
,
Memphis, TN,
US
Search for other works by this author on:
ISBN:
978-0-8031-7627-0
No. of Pages:
463
Publisher:
ASTM International
Published online:
2016
Published in print:
2015

Unintended micromotions causing fretting and corrosion within the modular head-neck junction of total hip replacement are governed by hip joint contact forces as well as by the frictional moments during articulation. Frictional moments typically are measured in unidirectional sliding tests and not during complex joint articulation. The purpose of this study was to develop a test rig that allows for the measurement of three-dimensional (3D) frictional joint moments during simulated gait and to calculate the direction and magnitude of the resulting taper moments. Using a spherical air bearing, a new testing rig with several load sensors was designed to fit into an existing 3D hip simulator. Unidirectional motion cycles (for validation with the literature) and walking cycles according to International Organization of Standardization (ISO) 14242-1 were applied to investigate frictional moments and taper loads for both 28 and 48-mm all-ceramic and 28-mm ceramic-on-polyethylene hip bearings. The precision of the testing rig was better than 0.01 Nm for each axis. During unidirectional motion, the mean peak moments for the smaller and the larger head size compared well with the literature. ISO walking cycles generated highly dynamic moments, which increased with head size. For the smaller 28-mm head size, a 1.4-Nm rotational moment around the taper axis and a 2.0-Nm bending moment orthogonally were determined. For the 48-mm head size, the moments were 2.5 Nm and 4 Nm, respectively. Future studies are necessary to further validate the test setup.

1.
Incavo
,
S.
, “
CORR Insights: Adverse Local Tissue Reaction Associated with a Modular Hip Hemiarthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
471
, No.
12
,
2013
, pp. 4087–4088.
2.
Krishnan
,
H.
,
Krishnan
,
S. P.
,
Blunn
,
G.
,
Skinner
,
J. A.
, and
Hart
,
A. J.
, “
Modular Neck Femoral Stems
,”
Bone Joint J.
, Vol.
95-B
, No.
8
,
2013
, pp. 1011–1021.
3.
Higgs
,
G. B.
,
Hanzlik
,
J. A.
,
MacDonald
,
D. W.
,
Gilbert
,
J. L.
,
Rimnac
,
C. M.
, and
Kurtz
,
S. M.
, “
Is Increased Modularity Associated with Increased Fretting and Corrosion Damage in Metal-on-Metal Total Hip Arthroplasty Devices? A Retrieval Study
,”
J. Arthrop.
, Vol.
28
, No.
8 (Suppl.)
,
2013
, pp. 2–6.
4.
Whitehouse
,
M. R.
,
Endo
,
M.
, and
Masri
,
B. A.
, “
Adverse Local Tissue Reaction Associated with a Modular Hip Hemiarthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
471
, No.
12
,
2013
, pp. 4082–4086.
5.
Nassif
,
N. A.
,
Nawabi
,
D. H.
,
Stoner
,
K.
,
Elpers
,
M.
,
Wright
,
T.
, and
Padgett
,
D. E.
, “
Taper Design Affects Failure of Large-Head Metal-on-Metal Total Hip Replacements
,”
Clin. Orthop. Relat. Res.
, Vol.
472
, No.
2
,
2014
, pp. 564–571.
6.
Pivec
,
R.
,
Meneghini
,
R. M.
,
Hozack
,
W. J.
,
Westrich
,
G. H.
, and
Mont
,
M. A.
, “
Modular Taper Junction Corrosion and Failure: How to Approach a Recalled Total Hip Arthroplasty Implant
,”
J. Arthrop.
, Vol.
29
, No.
1
,
2014
, pp. 1–6.
7.
Esposito
,
C. I.
,
Wright
,
T. M.
,
Goodman
,
S. B.
, and
Berry
,
D. J.
, “
What Is the Trouble with Trunnions?
Clin. Orthop. Relat. Res.
, Vol
472
, No.
12
,
2014
pp. 3652–3658.
8.
Gilbert
,
J. L.
,
Buckley
,
C. A.
, and
Jacobs
,
J. J.
, “
In Vivo Corrosion of Modular Hip Prosthesis Components in Mixed and Similar Metal Combinations. The Effect of Crevice, Stress, Motion, and Alloy Coupling
,”
J. Biomed. Mater. Res.
, Vol.
27
, No.
12
,
1993
, pp. 1533–1544.
9.
Bishop
,
N. E.
,
Hothan
,
A.
, and
Morlock
,
M. M.
, “
High Friction Moments in Large Hard-on-Hard Hip Replacement Bearings in Conditions of Poor Lubrication
,”
J. Orthop. Res.
, Vol.
31
, No.
5
,
2013
, pp. 807–813.
10.
Langton
,
D. J.
,
Sidaginamale
,
R.
,
Lord
,
J. K.
,
Nargol
,
A. V.
, and
Joyce
,
T. J.
, “
Taper Junction Failure in Large-Diameter Metal-on-Metal Bearings
,”
Bone Joint Res.
, Vol.
1
, No.
4
,
2012
, pp. 56–63.
11.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Bender
,
A.
,
Heinlein
,
B.
,
Duda
,
G. N.
,
Heller
,
M. O.
, and
Morlock
,
M. M.
, “
Realistic Loads for Testing Hip Implants
,”
Biomed. Mater. Eng.
, Vol.
20
, No.
2
,
2010
, pp. 65–75.
12.
Macdonald
,
W.
,
Aspenberg
,
A.
,
Jacobsson
,
C. M.
, and
Carlsson
,
L. V.
, “
Friction in Orthopaedic Zirconia Taper Assemblies
,”
Proc. Instn. Mech. Engrs.
, Vol.
214
,
Part H
,
2000
, pp. 685–692.
13.
Unsworth
,
A.
,
Hall
,
R. M.
,
Burgess
,
I. C.
,
Wroblewski
,
B. M.
,
Streicher
,
R. M.
, and
Semlitsch
,
M.
, “
Frictional Resistance of New and Explanted Artificial Hip Joints
,”
Wear
, Vol.
190
, No.
2
,
1995
, pp. 226–231.
14.
Brockett
,
C.
,
Williams
,
S.
,
Jin
,
Z.
,
Isaac
,
G.
, and
Fisher
,
J.
, “
Friction of Total Hip Replacements with Different Bearings and Loading Conditions
,”
J. Biomed. Mater. Res. B Appl. Biomater.
, Vol.
81
, No.
2
,
2007
, pp. 508–515.
15.
Scholes
,
S. C.
and
Unsworth
,
A.
, “
Comparison of Friction and Lubrication of Different Hip Prostheses
,”
Proc. Instn. Mech. Engrs.
, Vol.
214
,
Part H
,
2000
, pp. 49–56.
16.
Schmidig
,
G.
,
Patel
,
A.
,
Liepins
,
I.
,
Thakore
,
M.
, and
Markel
,
D. C.
, “
The Effects of Acetabular Shell Deformation and Liner Thickness on Frictional Torque in Ultrahigh-Molecular-Weight Polyethylene Acetabular Bearings
,”
J. Arthrop.
, Vol.
25
, No.
4
,
2010
, pp. 644–653.
17.
Damm
,
P.
,
Dymke
,
J.
,
Ackermann
,
R.
,
Bender
,
A.
,
Graichen
,
F.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
, “
Friction in Total Hip Joint Prosthesis Measured In Vivo During Walking
,”
Plos One
, Vol.
8
, No.
11
,
2013
, pp. 1–8.
18.
Schäfer
,
R.
,
Soltesz
,
U.
, and
Bernard
,
P. F.
, “
Friction in Hip-Joint Prostheses and Its Influence on the Fixation of the Artificial Head
,”
J. Mater. Sci. Mater. Med.
, Vol.
9
, No.
12
,
1998
, pp. 687–690.
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal